148 resultados para Fluorine containing polymers

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of polymers with a comb architecture were prepared where the poly(olefin sulfone) backbone was designed to be highly sensitive to extreme ultraviolet (EUV) radiation, while the well-defined poly(methyl methacrylate) (PMMA) arms were incorporated with the aim of increasing structural stability. It is hypothesized that upon EUV radiation rapid degradation of the polysulfone backbone will occur leaving behind the well-defined PMMA arms. The synthesized polymers were characterised and have had their performance as chain-scission EUV photoresists evaluated. It was found that all materials possess high sensitivity towards degradation by EUV radiation (E0 in the range 4–6 mJ cm−2). Selective degradation of the poly(1-pentene sulfone) backbone relative to the PMMA arms was demonstrated by mass spectrometry headspace analysis during EUV irradiation and by grazing-angle ATR-FTIR. EUV interference patterning has shown that materials are capable of resolving 30 nm 1:1 line:space features. The incorporation of PMMA was found to increase the structural integrity of the patterned features. Thus, it has been shown that terpolymer materials possessing a highly sensitive poly(olefin sulfone) backbone and PMMA arms are able to provide a tuneable materials platform for chain scission EUV resists. These materials have the potential to benefit applications that require nanopattering, such as computer chip manufacture and nano-MEMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two conjugated oligomers, representing elementary segments of fluorene-thiophene copolymers, are compared in terms of the microscopic morphology and the optical properties of thin deposits. The atomic force microscopy morphological data and the solid-state absorption and emission spectra are interpreted in terms of the assembly of the conjugated molecules. The compound with a terthiophene central unit and fluorene end-groups shows well-defined monolayer-by-monolayer assembly into micrometer-long stripe-like structures, with a crystalline herringbone-type organization within the monolayers. Polarized confocal microscopy indicates a strong orientation of the crystalline domains within the stripes. In contrast, the compound with a terfluorene central unit and thiophene end groups forms no textured aggregates and the optical spectra in the solid-state are very similar to those recorded in solution, suggesting that the molecules interact only weakly in the solid. The difference in behaviour between the two compounds most probably originates from their different capability to form densely-packed assemblies of interacting π-systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymethacrylate monoliths, specifically poly(glycidyl methacrylate-co-ethylene dimethacrylate) or poly(GMA-co-EDMA) monoliths, are a new generation of chromatographic supports and are significantly different from conventional particle-based adsorbents, membranes, and other monolithic supports for biomolecule purification. Similar to other monoliths, polymethacrylate monoliths possess large pores which allow convective flow of mobile phase and result in high flow rates at reduced pressure drop, unlike particulate supports. The simplicity of the adsorbent synthesis, pH resistance, and the ease and flexibility of tailoring their pore size to that of the target biomolecule are the key properties which differentiate polymethacrylate monoliths from other monoliths. Polymethacrylate monoliths are endowed with reactive epoxy groups for easy functionalization (with anion-exchange, hydrophobic, and affinity ligands) and high ligand retention. In this review, the structure and performance of polymethacrylate monoliths for chromatographic purification of biomolecules are evaluated and compared to those of other supports. The development and use of polymethacrylate monoliths for research applications have grown rapidly in recent times and have enabled the achievement of high through-put biomolecule purification on semi-preparative and preparative scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, the electron-accepting diketopyrrolopyrrole (DPP) moiety has been receiving considerable attention for constructing donor-acceptor (D-A) type organic semiconductors for a variety of applications, particularly for organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). Through association of the DPP unit with appropriate electron donating building blocks, the resulting D-A molecules interact strongly in the solid state through intermolecular D-A and π-π interactions, leading to highly ordered structures at the molecular and microscopic levels. The closely packed molecules and crystalline domains are beneficial for intermolecular and interdomain (or intergranular) charge transport. Furthermore, the energy levels can be readily adjusted, affording p-type, n-type, or ambipolar organic semiconductors with highly efficient charge transport properties in OTFTs. In the past few years, a number of DPP-based small molecular and polymeric semiconductors have been reported to show mobility close to or greater than 1 cm2 V -1 s-1. DPP-based polymer semiconductors have achieved record high mobility values for p-type (hole mobility: 10.5 cm2 V-1 s-1), n-type (electron mobility: 3 cm2 V-1 s-1), and ambipolar (hole/electron mobilities: 1.18/1.86 cm2 V-1 s-1) OTFTs among the known polymer semiconductors. Many DPP-based organic semiconductors have favourable energy levels and band gaps along with high hole mobility, which enable them as promising donor materials for OPVs. Power conversion efficiencies (PCE) of up to 6.05% were achieved for OPVs using DPP-based polymers, demonstrating their potential usefulness for the organic solar cell technology. This article provides an overview of the recent exciting progress made in DPP-containing polymers and small molecules that have shown high charge carrier mobility, around 0.1 cm2 V-1 s-1 or greater. It focuses on the structural design, optoelectronic properties, molecular organization, morphology, as well as performances in OTFTs and OPVs of these high mobility DPP-based materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple modular strategy for the synthesis of profluorescent nitroxide containing polymers is described. The incorporation of an epoxide as a pendant functionality on a polymer backbone synthesized using ATRP and subsequent nucleophilic ring-opening with sodium azide gave hydroxyl and azide functionality within a 3-bond radius. Orthogonal coupling chemistry then allowed the independent attachment of fluorophore and nitroxide groups in close proximity, giving rise to a profluorescent polymer. Validation of the viability of these materials as fluorescent sensors is demonstrated through efficient fluorescence switch-on observed when the materials are exposed to a model reductant or carbon-centred radical source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The encapsulation and release of bioactive molecules from polymeric vehicles represents the holy grail of drug and growth factor delivery therapies, whereby sustained and controlled release is crucial in eliciting a positive therapeutic effect. To this end, electrospraying is rapidly emerging as a popular technology for the production of polymeric particles containing bioactive molecules. Compared with traditional emulsion fabrication techniques, electrospraying has the potential to reduce denaturation of protein drugs and affords tighter regulation over particle size distribution and morphology. In this article, we review the importance of the electrospraying parameters that enable reproducible tailoring of the particles' physical and in vitro drug release characteristics, along with discussion of existing in vivo data. Controlled morphology and monodispersity of particles can be achieved with electrospraying, with high encapsulation efficiencies and without unfavorable denaturation of bioactive molecules throughout the process. Finally, the combination of electrospraying with electrospun scaffolds, with an emphasis on tissue regeneration is reviewed, depicting a technique in its relative infancy but holding great promise for the future of regenerative medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TCNQ·− radical anions (TCNQ = 7,7,8,8,-tetracyanoquinodimethane) form a wide range of semiconducting coordination polymers when coordinated to transition metals. Some such as CuTCNQ and AgTCNQ exhibit molecular switching and memory storage properties; others have intriguing magnetic properties and for example may behave as molecular magnets at low temperature. In this review, the electro- and photo-chemical synthesis and characterization of this important class of material is reviewed. In particular, the electrochemistry and the redox properties of TCNQ derivatives of coordination polymers based on Cu, Ag, Mn, Fe, Co, Ni, Zn and Cd transition metals are surveyed, with an emphasis on the mechanistic aspects of their electrochemical formation via nucleation–growth processes. Given that TCNQ is an extremely good electron acceptor, readily forming TCNQ•− and TCNQ2-, electrochemical reduction of TCNQ in the presence of a transition metal ion provides an ideal method for synthesis of metal-TCNQ materials by electrocrystallization from organic solvents and ionic liquids or solid-solid transformation using TCNQ modified electrodes from aqueous media containing transition metal electrolytes. The significance of the reversible formal potential (E0f) in these studies is discussed. The coupling of electrocrystallisation on electrode surfaces and microscopic characterization of the electrodeposited materials reveals a wide range of morphologies and phases which strongly influence their properties and applications. Since TCNQ also can be photo-reduced in the presence of suitable electron donors, analogous photochemical approaches to the synthesis of TCNQ-transition metal derivatives are available. The advantages of electrochemical and photochemical methods of synthesis relative to chemical synthesis are outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research introduces a novel dressing for burn wounds, containing silver nanoparticles in hydrogels for infected burn care. The 2-acrylamido-2-methylpropane sulfonic acid sodium salt hydrogels containing silver nanoparticles have been prepared via ultraviolet radiation. The formation of silver nanoparticles was monitored by surface plasmon bands and transmission electron microscopy. The concentration of silver nitrate loaded in the solutions slightly affected the physical properties and mechanical properties of the neat hydrogel. An indirect cytotoxicity study found that none of the hydrogels were toxic to tested cell lines. The measurement of cumulative release of silver indicated that 70%–82% of silver was released within 72 hr. The antibacterial activities of the hydrogels against common burn pathogens were studied and the results showed that 5 mM silver hydrogel had the greatest inhibitory activity. The results support its use as a potential burn wound dressing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of thiophene-containing second (G2) and third generation (G3) dendronized macromonomers with methacrylate polymerizable units as well as their corresponding dendronized polymers is reported. The dendrons are prepared from branched thiophene oligomers and are decorated with straight alkyl chains for solubility reasons. The polymerization reactions were done with AIBN as initiator and the polymers were characterized by NMR spectroscopy, elemental analysis and GPC. Molar masses are in the range of 2.2-5.4 × 105 g mol-1 (G2) and 1.3-3.0 × 104 g mol-1 (G3) for different runs. These polymers are investigated by cyclic voltammetry and optical spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we report design, synthesis and characterization of solution processable low band gap polymer semiconductors, poly{3,6-difuran-2-yl-2,5-di(2- octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-phenylene} (PDPP-FPF), poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene} (PDPP-FNF) and poly{3,6-difuran-2-yl-2,5-di(2- octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-anthracene} (PDPP-FAF) using the furan-containing 3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DBF) building block. As DBF acts as an acceptor moiety, a series of donor-acceptor (D-A) copolymers can be generated when it is attached alternatively with phenylene, naphthalene or anthracene donor comonomer blocks. Optical and electrochemical characterization of thin films of these polymers reveals band gaps in the range of 1.55-1.64 eV. These polymers exhibit excellent hole mobility when used as the active layer in organic thin-film transistor (OTFT) devices. Among the series, the highest hole mobility of 0.11 cm 2 V -1 s -1 is achieved in bottom gate and top-contact OTFT devices using PDPP-FNF. When these polymers are used as a donor and [70]PCBM as the acceptor in organic photovoltaic (OPV) devices, power conversion efficiencies (PCE) of 2.5 and 2.6% are obtained for PDPP-FAF and PDPP-FNF polymers, respectively. Such mobility values in OTFTs and performance in OPV make furan-containing DBF a very promising block for designing new polymer semiconductors for a wide range of organic electronic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of a malaria DNA vaccine is presented. A 40 kHz ultrasonic atomization device was used to create the microparticles from a feedstock containing 5 volumes of 0.5% w/v PLGA in acetone and 1 volume of condensed DNA which was fed at a flow rate of 18ml h-1. The plasmid DNA vectors encoding a malaria protein were condensed with a cationic polymer before atomization. Results High levels of gene expression in vitro were observed in COS-7 cells transfected with condensed DNA at a nitrogen to phosphate (N/P) ratio of 10. At this N/P ratio, the condensed DNA exhibited a monodispersed nanoparticle size (Z-average diameter of 60.8 nm) and a highly positive zeta potential of 38.8mV. The microparticle formulations of malaria DNA vaccine were quality assessed and it was shown that themicroparticles displayed high encapsulation efficiencies between 82-96% and a narrow size distribution in the range of 0.8-1.9 μm. In vitro release profile revealed that approximately 82% of the DNA was released within 30 days via a predominantly diffusion controlledmass transfer system. Conclusions This ultrasonic atomization technique showed excellent particle size reproducibility and displayed potential as an industrially viable approach for the formulation of controlled release particles.