916 resultados para Flood Proof Design
em Queensland University of Technology - ePrints Archive
Resumo:
Bouncing Back Architecture Exhibition: This exhibition showcases interpretations of urban resiliency by 2nd and 4th Year undergraduate architecture students who explore the notion of Bouncing Back from the 2011 Queensland floods, in the context of contemporary Brisbane built environment. Design solutions have been expressed in a variety of forms including emergency shelters, flood-proof housing and a range of urban designs, some of which address extreme environmental conditions. Design Process Workshop | Architecture Workshop with Queensland Academy of Creative Industries Students: In collaboration with Homegrown Facilitator Natalie Wright, Lindy Osborne and Glenda Caldwell and some of their architecture students from the QUT School of Design, extended the university design studio experience to 18 Secondary School students, who brainstormed and designed emergency food distribution shelters for those affected by floods. Designs and models created in the workshop were subsequently included in the Bouncing Back Architecture Exhibition.
Resumo:
"Bouncing Back: Resilient Design for Brisbane" was an opportunity for QUT students to communicate their inspiring design responses to adversity, to the larger Brisbane community. The exhibition demonstrates new and innovative ways of thinking about our cities, and how they are built to be resilient and to suit extreme environmental conditions. The challenge for architecture students is to address the state of architecture as a reflection of today's world and to consider how design fits into the 21st century. Students have explored notions of 'Urban Resilience' from multiple perspectives, including emergency design while facing flooding, flood proof housing and urban designs.
Resumo:
"Bouncing Back: Resilient Design for Brisbane" was an opportunity for QUT students to communicate their inspiring design responses to adversity, to the larger Brisbane community. The exhibition demonstrates new and innovative ways of thinking about our cities, and how they are built to be resilient and to suit extreme environmental conditions. The challenge for architecture students is to address the state of architecture as a reflection of today's world and to consider how design fits into the 21st century. Students have explored notions of 'Urban Resilience' from multiple perspectives, including emergency design while facing flooding, flood proof housing and urban designs.
Resumo:
This article reports the details of a research on novel design in the field of semitrailer sector and discuss design by hazard prevention techniques. The novel design made addresses occupational health and safety (OHS)concerns of fall from heights. The research includes a detailed survey of national data sources to examine the fatalities caused due to fall from heights in car carriers. The study investigates OHS recommendations in Australia for semitrailer sector. Often injuries are caused due to drivers working above the 1.5 meter height for loading, unloading of the cars, moving the decks up, down, strapping the cars, and slipperly. The new design is developed using latest computer aided design and engineeing (CAD, CAE), product data management (PDM), virtual design process (VDP). The new car carrier design excels in reducing the risks of injuries to drivers and new bench mark for OHS standards. The new design has all the decks operated with hydraulics and uses unique ratchet lock mechanism (fool proof design) and loading happens at a safe working height (below 1.5 meter). All the cars are strapped on the safe working height, and then car desks operated hydraulically to transfer them to the required position. This also includes the car on the prime mover, which shuttles across from one deck to other using hydraulic and rack-pinion mechanisms. The novel design car carrier solves the problem of falls from height: next step would be to transfer this technology across other similar effected sectors.
Resumo:
Anuradha Mathur and Dilip da Cunha theorise in their work on cities and flooding that it is not the floodwaters that threaten lives and homes, the real cause of danger in natural disaster is the fixity of modern civilisation. Their work traces the fluidity of the boundaries between 'dry' and 'wet' land challenging the deficiencies of traditional cartography in representing the extents of bodies of water. Mathur and da Cunha propose a process of unthinking to address the redevelopment of communities in the aftermath of natural disaster. By documenting the path of floodwaters in non-Euclidean space they propose a more appropriate response to flooding. This research focuses on the documentation of flooding in the interior of dwellings, which is an extreme condition of damage by external conditions in an environment designed to protect from these very elements. Because the floodwaters don't discriminate between the interior and the exterior, they move between structures with disregard for the systems of space we have in place. With the rapid clean up that follows flood damage, little material evidence is left for post mortem examination. This is especially the case for the flood damaged interior, piles of materials susceptible to the elements, furniture, joinery and personal objects line curbsides awaiting disposal. There is a missed opportunity in examining the interior in the after math of flood, in the way that Mathur and Dilip investigate floods and the design of cities, the flooded interior proffers an undersigned interior to study. In the absence of intact flood damaged interior, this research relies on two artists' documentation of the flooded interior. The first case study is the mimetic scenographic interiors of a flood-damaged office exhibited in the Bangkok art gallery by the group _Proxy in 2011. The second case study is Robert Polidori's photographic exhibition in New Orleans, described by Julianna Preston as, 'a series of interiors undetected by satellite imaging or storm radar. More telling, more dramatic, more unnerving, more alarming, they force a disturbance of what is familiar'.
Resumo:
In the face of Australia’s disaster-prone environment, architects Ian Weir and James Davidson are reconceptualising how our residential buildings might become more resilient to fire, flood and cyclone. With their first-hand experience of natural disasters, James, director of Emergency Architects Australia (EAA), and Ian, one of Australia’s few ‘bushfire architects’, discuss the ways we can design with disaster in mind. Dr Ian Weir is one of Australia’s few ‘bushfire architects’. Exploring a holistic ‘ground up’ approach to bushfire where landscape, building design and habitation patterns are orchestrated to respond to site-specific fire characteristics. Ian’s research is developed through design studio teaching at QUT and through built works in Western Australia’s fire prone forests and heathlands.
Resumo:
The purpose of this proof-of-concept study was to determine the relevance of direct measurements to monitor the load applied on the osseointegrated fixation of transfemoral amputees during static load bearing exercises. The objectives were (A) to introduce an apparatus using a three-dimensional load transducer, (B) to present a range of derived information relevant to clinicians, (C) to report on the outcomes of a pilot study and (D) to compare the measurements from the transducer with those from the current method using a weighing scale. One transfemoral amputee fitted with an osseointegrated implant was asked to apply 10 kg, 20 kg, 40 kg and 80 kg on the fixation, using self-monitoring with the weighing scale. The loading was directly measured with a portable kinetic system including a six-channel transducer, external interface circuitry and a laptop. As the load prescribed increased from 10 kg to 80 kg, the forces and moments applied on and around the antero-posterior axis increased by 4 fold anteriorly and 14 fold medially, respectively. The forces and moments applied on and around the medio-lateral axis increased by 9 fold laterally and 16 fold from anterior to posterior, respectively. The long axis of the fixation was overloaded and underloaded in 17 % and 83 % of the trials, respectively, by up to ±10 %. This proof-of-concept study presents an apparatus that can be used by clinicians facing the challenge of improving basic knowledge on osseointegration, for the design of equipment for load bearing exercises and for rehabilitation programs.
Resumo:
A group key exchange (GKE) protocol allows a set of parties to agree upon a common secret session key over a public network. In this thesis, we focus on designing efficient GKE protocols using public key techniques and appropriately revising security models for GKE protocols. For the purpose of modelling and analysing the security of GKE protocols we apply the widely accepted computational complexity approach. The contributions of the thesis to the area of GKE protocols are manifold. We propose the first GKE protocol that requires only one round of communication and is proven secure in the standard model. Our protocol is generically constructed from a key encapsulation mechanism (KEM). We also suggest an efficient KEM from the literature, which satisfies the underlying security notion, to instantiate the generic protocol. We then concentrate on enhancing the security of one-round GKE protocols. A new model of security for forward secure GKE protocols is introduced and a generic one-round GKE protocol with forward security is then presented. The security of this protocol is also proven in the standard model. We also propose an efficient forward secure encryption scheme that can be used to instantiate the generic GKE protocol. Our next contributions are to the security models of GKE protocols. We observe that the analysis of GKE protocols has not been as extensive as that of two-party key exchange protocols. Particularly, the security attribute of key compromise impersonation (KCI) resilience has so far been ignored for GKE protocols. We model the security of GKE protocols addressing KCI attacks by both outsider and insider adversaries. We then show that a few existing protocols are not secure against KCI attacks. A new proof of security for an existing GKE protocol is given under the revised model assuming random oracles. Subsequently, we treat the security of GKE protocols in the universal composability (UC) framework. We present a new UC ideal functionality for GKE protocols capturing the security attribute of contributiveness. An existing protocol with minor revisions is then shown to realize our functionality in the random oracle model. Finally, we explore the possibility of constructing GKE protocols in the attribute-based setting. We introduce the concept of attribute-based group key exchange (AB-GKE). A security model for AB-GKE and a one-round AB-GKE protocol satisfying our security notion are presented. The protocol is generically constructed from a new cryptographic primitive called encapsulation policy attribute-based KEM (EP-AB-KEM), which we introduce in this thesis. We also present a new EP-AB-KEM with a proof of security assuming generic groups and random oracles. The EP-AB-KEM can be used to instantiate our generic AB-GKE protocol.
Resumo:
Given there is currently a migration trend from traditional electrical supervisory control and data acquisition (SCADA) systems towards a smart grid based approach to critical infrastructure management. This project provides an evaluation of existing and proposed implementations for both traditional electrical SCADA and smart grid based architectures, and proposals a set of reference requirements which test bed implementations should implement. A high-level design for smart grid test beds is proposed and initial implementation performed, based on the proposed design, using open source and freely available software tools. The project examines the move towards smart grid based critical infrastructure management and illustrates the increased security requirements. The implemented test bed provides a basic framework for testing network requirements in a smart grid environment, as well as a platform for further research and development. Particularly to develop, implement and test network security related disturbances such as intrusion detection and network forensics. The project undertaken proposes and develops an architecture of the emulation of some smart grid functionality. The Common Open Research Emulator (CORE) platform was used to emulate the communication network of the smart grid. Specifically CORE was used to virtualise and emulate the TCP/IP networking stack. This is intended to be used for further evaluation and analysis, for example the analysis of application protocol messages, etc. As a proof of concept, software libraries were designed, developed and documented to enable and support the design and development of further smart grid emulated components, such as reclosers, switches, smart meters, etc. As part of the testing and evaluation a Modbus based smart meter emulator was developed to provide basic functionality of a smart meter. Further code was developed to send Modbus request messages to the emulated smart meter and receive Modbus responses from it. Although the functionality of the emulated components were limited, it does provide a starting point for further research and development. The design is extensible to enable the design and implementation of additional SCADA protocols. The project also defines an evaluation criteria for the evaluation of the implemented test bed, and experiments are designed to evaluate the test bed according to the defined criteria. The results of the experiments are collated and presented, and conclusions drawn from the results to facilitate discussion on the test bed implementation. The discussion undertaken also present possible future work.
Resumo:
Bana et al. proposed the relation formal indistinguishability (FIR), i.e. an equivalence between two terms built from an abstract algebra. Later Ene et al. extended it to cover active adversaries and random oracles. This notion enables a framework to verify computational indistinguishability while still offering the simplicity and formality of symbolic methods. We are in the process of making an automated tool for checking FIR between two terms. First, we extend the work by Ene et al. further, by covering ordered sorts and simplifying the way to cope with random oracles. Second, we investigate the possibility of combining algebras together, since it makes the tool scalable and able to cover a wide class of cryptographic schemes. Specially, we show that the combined algebra is still computationally sound, as long as each algebra is sound. Third, we design some proving strategies and implement the tool. Basically, the strategies allow us to find a sequence of intermediate terms, which are formally indistinguishable, between two given terms. FIR between the two given terms is then guaranteed by the transitivity of FIR. Finally, we show applications of the work, e.g. on key exchanges and encryption schemes. In the future, the tool should be extended easily to cover many schemes. This work continues previous research of ours on use of compilers to aid in automated proofs for key exchange.
Resumo:
After state-wide flooding and a category-5 tropical cyclone, three-quarters of the state of Queensland was declared a disaster zone in early 2011. This deluge of adversity had a significant impact on university students, a few weeks prior to the start of the academic semester. The purpose of this paper is to examine the role that design plays in facilitating students to understand and respond to, adversity. The participants of this study were second and fourth year architectural design students at a large Australian University, in Queensland. As a part of their core architectural design studies, students were required to provide architectural responses to the recent catastrophic events in Queensland. Qualitative data was obtained through student surveys, work design work submitted by students and a survey of guests who attending an exhibition of the student work. The results of this research showed that the students produced more than just the required set of architectural drawings, process journals and models, but also recognition of the important role that the affective dimension of the flooding event and the design process played in helping them to both understand and respond to, adversity. They held the ‘real world’ experience and practical aspect of the assessment in higher regard than their typical focus on aesthetics and the making of iconic design. Perhaps most importantly, the students recognised that this process allowed them to have a voice, and a means to respond to adversity through the powerful language of design.
Resumo:
A practical method for the design of dual-band decoupling and matching networks (DMN) for two closely spaced antennas using discrete components is presented. The DMN reduces the port-to-port coupling and enhances the diversity of the antennas. By applying the DMN, the radiation efficiency can also be improved when one port is fed and the other port is match terminated. The proposed DMN works at two frequencies simultaneously without the need for any switch. As a proof of concept, a dual-band DMN for a pair of monopoles spaced 0.05λ apart is designed. The measured return loss and port isolation exceed 10 dB from 1.71 GHz to 1.76 GHz and from 2.27 GHz to 2.32 GHz.
Resumo:
This paper presents an approach to modelling the resilience of a generic (potable) water supply system. The system is contextualized as a meta-system consisting of three subsystems to represent the natural catchment, the water treatment plant and the water distribution infrastructure for urban use. An abstract mathematical model of the meta-system is disaggregated progressively to form a cascade of equations forming a relational matrix of models. This allows the investigation of commonly implicit relationships between various operational components within the meta system, the in-depth understanding of specific system components and influential factors and the incorporation of explicit disturbances to explore system behaviour. Consequently, this will facilitate long-term decision making to achieve sustainable solutions for issues such as, meeting a growing demand or managing supply-side influences in the meta-system under diverse water availability regimes. This approach is based on the hypothesis that the means to achieve resilient supply of water may be better managed by modelling the effects of changes at specific levels that have a direct or in some cases indirect impact on higher-order outcomes. Additionally, the proposed strategy allows the definition of approaches to combine disparate data sets to synthesise previously missing or incomplete higher-order information, a scientifically robust means to define and carry out meta-analyses using knowledge from diverse yet relatable disciplines relevant to different levels of the system and for enhancing the understanding of dependencies and inter-dependencies of variable factors at various levels across the meta-system. The proposed concept introduces an approach for modelling a complex infrastructure system as a meta system which consists of a combination of bio-ecological, technical and socio-technical subsystems.