279 resultados para Flood Frequency

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flood flow in urbanised areas constitutes a major hazard to the population and infrastructure as seen during the summer 2010-2011 floods in Queensland (Australia). Flood flows in urban environments have been studied relatively recently, although no study considered the impact of turbulence in the flow. During the 12-13 January 2011 flood of the Brisbane River, some turbulence measurements were conducted in an inundated urban environment in Gardens Point Road next to Brisbane's central business district (CBD) at relatively high frequency (50 Hz). The properties of the sediment flood deposits were characterised and the acoustic Doppler velocimeter unit was calibrated to obtain both instantaneous velocity components and suspended sediment concentration in the same sampling volume with the same temporal resolution. While the flow motion in Gardens Point Road was subcritical, the water elevations and velocities fluctuated with a distinctive period between 50 and 80 s. The low frequency fluctuations were linked with some local topographic effects: i.e, some local choke induced by an upstream constriction between stairwells caused some slow oscillations with a period close to the natural sloshing period of the car park. The instantaneous velocity data were analysed using a triple decomposition, and the same triple decomposition was applied to the water depth, velocity flux, suspended sediment concentration and suspended sediment flux data. The velocity fluctuation data showed a large energy component in the slow fluctuation range. For the first two tests at z = 0.35 m, the turbulence data suggested some isotropy. At z = 0.083 m, on the other hand, the findings indicated some flow anisotropy. The suspended sediment concentration (SSC) data presented a general trend with increasing SSC for decreasing water depth. During a test (T4), some long -period oscillations were observed with a period about 18 minutes. The cause of these oscillations remains unknown to the authors. The last test (T5) took place in very shallow waters and high suspended sediment concentrations. It is suggested that the flow in the car park was disconnected from the main channel. Overall the flow conditions at the sampling sites corresponded to a specific momentum between 0.2 to 0.4 m2 which would be near the upper end of the scale for safe evacuation of individuals in flooded areas. But the authors do not believe the evacuation of individuals in Gardens Point Road would have been safe because of the intense water surges and flow turbulence. More generally any criterion for safe evacuation solely based upon the flow velocity, water depth or specific momentum cannot account for the hazards caused by the flow turbulence, water depth fluctuations and water surges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emergency management and climate change adaptation will increasingly challenge all levels of government because of three main factors. First, Australia is extremely vulnerable to the impacts of climate change, particularly through the increasing frequency, duration and/or intensity of disasters such as floods and bushfires. Second, the system of government that divides powers by function and level can often act as a barrier to a well-integrated response. Third, policymaking processes struggle to cope with such complex inter-jurisdictional issues. This paper discusses these factors and explores the nature of the challenge for Australian governments. Investigations into the 2009 Victorian bushfires, the 2011 Perth Hills bushfires, and the 2011 Brisbane floods offer an indication of the challenges ahead and it is argued that there is a need to: improve community engagement and communication; refocus attention on resilience; improve interagency communication and collaboration; and, develop institutional arrangements that support continual improvement and policy learning. These findings offer an opportunity for improving responses as well as a starting point for integrating disaster risk management and climate change adaptation policies. The paper is based on the preliminary findings of an NCCARF funded research project: The Right Tool for the Job: Achieving climate change adaptation outcomes through improved disaster management policies, planning and risk management strategies involving Griffith University and RMIT. It should be noted from the outset that the purpose of this research project is not to criticise the actions of emergency service workers and volunteers who do an incredible job under extreme circumstances, often risking their own lives in the process. The aim is simply to offer emergency management agencies the opportunity to step back and rethink their overall approach to the challenge they face in the light of the impacts of climate change.