137 resultados para Flattube multilouvered fin heat exchangers
em Queensland University of Technology - ePrints Archive
Resumo:
Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.
Resumo:
Australia is a high potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage.However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional(2D numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.
Resumo:
The aim of this paper is to obtain the momentum transfer coefficient between the two phases, denoted by f and p, occupying a bi-disperse porous medium by mapping the available experimental data to the theoretical model proposed by Nield and Kuznetsov. Data pertinent to plate-fin heat exchangers, as bi-disperse porous media, were used. The measured pressure drops for such heat exchangers are then used to give the overall permeability which is linked to the porosity and permeability of each phase as well as the interfacial momentum transfer coefficient between the two phases. Accordingly, numerical values are obtained for the momentum transfer coefficient for three different fin spacing values considered in the heat exchanger experiments.
Resumo:
Most studies on the characterisation of deposits on heat exchangers have been based on bulk analysis, neglecting the fine structural features and the compositional profiles of layered deposits. Attempts have been made to fully characterise a fouled stainless steel tube obtained from a quintuple Roberts evaporator of a sugar factory using X-ray diffraction and scanning electron microscopy techniques. The deposit contains three layers at the bottom of the tube and two layers on the other sections and is composed of hydroxyapatite, calcium oxalate dihydrate and an amorphous material. The proportions of these phases varied along the tube height. Energy-dispersive spectroscopy and XRD analysis on the surfaces of the outermost and innermost layers showed that hydroxyapatite was the major phase attached to the tube wall, while calcium oxalate dihydrate (with pits and voids) was the major phase on the juice side. Elemental mapping of the cross-sections of the deposit revealed the presence of a mineral, Si-Mg-Al-Fe-O, which is probably a silicate mineral. Reasons for the defects in the oxalate crystal surfaces, the differences in the crystal size distribution from bottom to the top of the tube and the composite fouling process have been postulated.
Resumo:
This paper offers numerical modelling of a waste heat recovery system. A thin layer of metal foam is attached to a cold plate to absorb heat from hot gases leaving the system. The heat transferred from the exhaust gas is then transferred to a cold liquid flowing in a secondary loop. Two different foam PPI (Pores Per Inch) values are examined over a range of fluid velocities. Numerical results are then compared to both experimental data and theoretical results available in the literature. Challenges in getting the simulation results to match those of the experiments are addressed and discussed in detail. In particular, interface boundary conditions specified between a porous layer and a fluid layer are investigated. While physically one expects much lower fluid velocity in the pores compared to that of free flow, capturing this sharp gradient at the interface can add to the difficulties of numerical simulation. The existing models in the literature are modified by considering the pressure gradient inside and outside the foam. Comparisons against the numerical modelling are presented. Finally, based on experimentally-validated numerical results, thermo-hydraulic performance of foam heat exchangers as waste heat recovery units is discussed with the main goal of reducing the excess pressure drop and maximising the amount of heat that can be recovered from the hot gas stream.
Resumo:
The system for high utilization of LNG cold energy is proposed by use of process simulator. The proposed design is a closed loop system, and composed by a Hampson type heat exchanger, turbines, pumps and advanced humid air turbine (AHAT) or Gas turbine combined cycle (GTCC). Its heat sources are Boil-off gas and cooling water for AHAT or GTCC. The higher cold exergy recovery to power can be about 38 to 56% as compared to the existing cold power generation of about 20% with a Rankine cycle of a single component. The advantage of the proposed system is to reduce the number of heat exchangers. Furthermore, the environmental impact is minimized because the proposed design is a closed loop system. A life cycle comparative cost is calculated to demonstrate feasibility of the proposed design. The development of the Hampson type exchangers is expected to meet the key functional requirements and will result in much higher LNG cold exergy recovery and the overall system performance i.e. re-gasification. Additionally, the proposed design is expected to provide flexibility to meet different gas pressure suited for the deregulation of energy system in Japan and higher reliability for an integrated boil-off gas system.
Resumo:
All relevant international standards for determining if a metallic rod is flammable in oxygen utilize some form of “promoted ignition” test. In this test, for a given pressure, an overwhelming ignition source is coupled to the end of the test sample and the designation flammable or nonflammable is based upon the amount burned, that is, a burn criteria. It is documented that (1) the initial temperature of the test sample affects the burning of the test sample both (a) in regards to the pressure at which the sample will support burning (threshold pressure) and (b) the rate at which the sample is melted (regression rate of the melting interface); and, (2) the igniter used affects the test sample by heating it adjacent to the igniter as ignition occurs. Together, these facts make it necessary to ensure, if a metallic material is to be considered flammable at the conditions tested, that the burn criteria will exclude any region of the test sample that may have undergone preheating during the ignition process. A two-dimensional theoretical model was developed to describe the transient heat transfer occurring and resultant temperatures produced within this system. Several metals (copper, aluminum, iron, and stainless steel) and ignition promoters (magnesium, aluminum, and Pyrofuze®) were evaluated for a range of oxygen pressures between 0.69 MPa (100 psia) and 34.5 MPa (5,000 psia). A MATLAB® program was utilized to solve the developed model that was validated against (1) a published solution for a similar system and (2) against experimental data obtained during actual tests at the National Aeronautics and Space Administration White Sands Test Facility. The validated model successfully predicts temperatures within the test samples with agreement between model and experiment increasing as test pressure increases and/or distance from the promoter increases. Oxygen pressure and test sample thermal diffusivity were shown to have the largest effect on the results. In all cases evaluated, there is no significant preheating (above about 38°C/100°F) occurring at distances greater than 30 mm (1.18 in.) during the time the ignition source is attached to the test sample. This validates a distance of 30 mm (1.18 in.) above the ignition promoter as a burn length upon which a definition of flammable can be based for inclusion in relevant international standards (that is, burning past this length will always be independent of the ignition event for the ignition promoters considered here. KEYWORDS: promoted ignition, metal combustion, heat conduction, thin fin, promoted combustion, burn length, burn criteria, flammability, igniter effects, heat affected zone.
Resumo:
This thesis is a documented energy audit and long term study of energy and water reduction in a ghee factory. Global production of ghee exceeds 4 million tonnes annually. The factory in this study refines dairy products by non-traditional centrifugal separation and produces 99.9% pure, canned, crystallised Anhydrous Milk Fat (Ghee). Ghee is traditionally made by batch processing methods. The traditional method is less efficient, than centrifugal separation. An in depth systematic investigation was conducted of each item of major equipment including; ammonia refrigeration, a steam boiler, canning equipment, pumps, heat exchangers and compressed air were all fine-tuned. Continuous monitoring of electrical usage showed that not every initiative worked, others had pay back periods of less than a year. In 1994-95 energy consumption was 6,582GJ and in 2003-04 it was 5,552GJ down 16% for a similar output. A significant reduction in water usage was achieved by reducing the airflow in the refrigeration evaporative condensers to match the refrigeration load. Water usage has fallen 68% from18ML in 1994-95 to 5.78ML in 2003-04. The methods reported in this thesis could be applied to other industries, which have similar equipment, and other ghee manufacturers.
Resumo:
To date, the formation of deposits on heat exchanger surfaces is the least understood problem in the design of heat exchangers for processing industries. Dr East has related the structure of the deposits to solution composition and has developed predictive models for composite fouling of calcium oxalate and silica in sugar factory evaporators.
Resumo:
Developments in evaporator cleaning have accelerated in the past 10 years as a result of an extended period of research into scale formation and scale composition. Chemical cleaning still provides the most cost effective method of cleaning the evaporators. The paper describes a system that was designed to obtain on-line samples of evaporator scale negating the need to open up hot evaporator vessels for scale collection. This system was successfully implemented in a number of evaporators at a sugar mill. This paper also describes a recent experience in a sugar factory in which the cleaning procedure was slightly modified, resulting in effective removal of intractable scale.
Resumo:
Developments in evaporator cleaning have accelerated in the past 10 years as a result of an extended period of research into scale formation and scale composition. Chemical cleaning still provides the most cost effective method of cleaning the evaporators. The paper describes a system that was designed to obtain on-line samples of evaporator scale negating the need to open up hot evaporator vessels for scale collection. This system was successfully implemented in a number of evaporators at a sugar mill. This paper also describes a recent experience in a sugar factory in which the cleaning procedure was slightly modified resulting in effective removal of intractable scale.
Resumo:
This paper presents a numerical model for understanding particle transport and deposition in metal foam heat exchangers. Two-dimensional steady and unsteady numerical simulations of a standard single row metal foam-wrapped tube bundle are performed for different particle size distributions, i.e. uniform and normal distributions. Effects of different particle sizes and fluid inlet velocities on the overall particle transport inside and outside the foam layer are also investigated. It was noted that the simplification made in the previously-published numerical works in the literature, e.g. uniform particle deposition in the foam, is not necessarily accurate at least for the cases considered here. The results highlight the preferential particle deposition areas both along the tube walls and inside the foam using a developed particle deposition likelihood matrix. This likelihood matrix is developed based on three criteria being particle local velocity, time spent in the foam, and volume fraction. It was noted that the particles tend to deposit near both front and rear stagnation points. The former is explained by the higher momentum and direct exposure of the particles to the foam while the latter only accommodate small particles which can be entrained in the recirculation region formed behind the foam-wrapped tubes.
Resumo:
This project provides a steppingstone to comprehend the mechanisms that govern particulate fouling in metal foam heat exchangers. The method is based on development of an advanced Computational Fluid Dynamics model in addition to performing analytical validation. This novel method allows an engineer to better optimize heat exchanger designs, thereby mitigating fouling, reducing energy consumption caused by fouling, economize capital expenditure on heat exchanger maintenance, and reduce operation downtime. The robust model leads to the establishment of an alternative heat exchanger configuration that has lower pressure drop and particulate deposition propensity.
Resumo:
Natural convection thermal boundary layer adjacent to the heated inclined wall of a right angled triangle with an adiabatic fin attached to that surface is investigated by numerical simulations. The finite volume based unsteady numerical model is adopted for the simulation. It is revealed from the numerical results that the development of the boundary layer along the inclined surface is characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady stage. These three stages can be clearly identified from the numerical simulations. Moreover, in presence of adiabatic fin, the thermal boundary layer adjacent to the inclined wall breaks initially. However, it is reattached with the downstream boundary layer next to the fin. More attention has been given to the boundary layer development near the fin area.