2 resultados para Ferrites

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The catalytic performance of Fe–Ni/PG (PG: palygorskite) catalysts pre-calcined and reduced at 500 ◦C for catalytic decomposition of tar derived through rice hull gasification was investigated. The materials were characterized by using X-ray diffraction, hydrogen temperature reduction, and transmission electron microscopy. The results showed that ferrites with spinel structure ((Fe, Ni)3O4) were formed during preparation of bimetallic systems during calcination and reduction of the precursors (Fe–Ni/PG catalysts) and NiO metal oxide particles were formed over Fe6–Ni9/PG catalyst. The obtained experimental data showed that Fe–Ni/PG catalysts had greater catalytic activity than natural PG. Tar removal using Fe6–Ni9/PG catalyst was as high as Fe10–Ni6/PG catalyst (99.5%). Fe6–Ni9/PG showed greater catalytic activity with greater H2 yield and showed stronger resistance to carbon deposition, attributed to the presence of NiO nanoparticles. Thus, the addition of nickel and iron oxides played an important role in catalytic cracking of rice hull biomass tar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper doped zinc aluminium ferrites are synthesized by the solid-state reaction route is cubic crystalline with unit cell parameter varying from 8.39 to 8.89 Å. TEM pictures clearly indicating that fundamental unit is composed of octahedral and tetrahedral blocks and joined strongly shown in (a). EPR spectra is compositional dependent at lower Al/Cu concentration EPR spectra is due to Fe3+ and at a higher content of Al/Cu the EPR spectra is due to Cu2+. Absence of EPR spectra at room temperature indicates that the sample is perfectly ferromagnetic. EPR results at low temperature indicate that the sample is paramagnetic, and that copper is placed in the tetragonal elongation (B) site with magnetically non-equivalent ions in the unit cell having strong exchange coupling between them. This is shown in (b). (a) TEM image of ferrite with x = 0.15. (b) EPR spectrum of ferrite with x = 0.75.