18 resultados para Ferric ferrocyanide
em Queensland University of Technology - ePrints Archive
Resumo:
The genesis of ferruginous nodules and pisoliths in soils and weathering profiles of coastal southern and eastern Australia has long been debated. It is not clear whether iron (Fe) nodules are redox accumulations, residues of Miocene laterite duricrust, or the products of contemporary weathering of Fe-rich sedimentary rocks. This study combines a catchment-wide survey of Fe nodule distribution in Poona Creek catchment (Fraser Coast, Queensland) with detailed investigations of a representative ferric soil profile to show that Fe nodules are derived from Fe-rich sandstones. Where these crop out, they are broken down, transported downslope by colluvial processes, and redeposited. Chemical and physical weathering transforms these eroded rock fragments into non-magnetic Fe nodules. Major features of this transformation include lower hematite/goethite and kaolinite/gibbsite ratios, increased porosity, etching of quartz grains, and development of rounded morphology and a smooth outer cortex. Iron nodules are commonly concentrated in ferric horizons. We show that these horizons form as the result of differential biological mixing of the soil. Bioturbation gradually buries nodules and rock fragments deposited at the surface of the soil, resulting in a largely nodule-free 'biomantle' over a ferric 'stone line'. Maghemite-rich magnetic nodules are a prominent feature of the upper half of the profile. These are most likely formed by the thermal alteration of non-magnetic nodules located at the top of the profile during severe bushfires. They are subsequently redistributed through the soil profile by bioturbation. Iron nodules occurring in the study area are products of contemporary weathering of Fe-rich rock units. They are not laterite duricrust residues nor are they redox accumulations, although redox-controlled dissolution/re-precipitation is an important component of post-depositional modification of these Fe nodules.
Resumo:
In Uganda, vitamin A deficiency (VAD) and iron deficiency anaemia (IDA) are major public health problems with between 15-32% of children under 5 years of age showing VAD and 73% being anaemic. This is largely due to the fact that the staple food crop of the country, banana, is low in pro-vitamin A and iron, therefore leading to dietary deficiencies. Although worldwide progress has been made to control VAD and IDA through supplementation, food fortification and diet diversification, their long term sustainability and impact in developing countries such as Uganda is limited. The approach taken by researchers at Queensland University of Technology (QUT), Australia, in collaboration with the National Agricultural Research Organization (NARO), Uganda, to address this problem, is to generate consumer acceptable banana varieties with significantly increased levels of pro-vitamin A and iron in the fruit using genetic engineering techniques. Such an approach requires the use of suitable, well characterised genes and promoters for targeted transgene expression. Recently, a new banana phytoene synthase gene (APsy2a) involved in the synthesis of pro-vitamin A (pVA) carotenoids was isolated from a high â-carotene banana (F’ei cv Asupina). In addition, sequences of banana ferritin, an iron storage protein, have been isolated from Cavendish banana. The aim of the research described in this thesis was to evaluate the function of these genes to assess their suitability for the biofortification of banana fruit. In addition, a range of banana-derived promoters were characterised to determine their suitability for controlling the expression of transgenes in banana fruit. Due to the time constraints involved with generating transgenic banana fruit, rice was used as the model crop to investigate the functionality of the banana-derived APsy2a and ferritin genes. Using Agrobacterium-mediated transformation, rice callus was transformed with APsy2a +/- the bacterial-derived carotene desaturase gene (CrtI) each under the control of the constitutive maize poly-ubiquitin promoter (ZmUbi) or seed-specific rice glutelin1 (Gt1) promoter. The maize phytoene synthase (ZmPsy1) gene was included as a control. On selective media, with the exception of ZmUbi-CrtI-transgenic callus, all antibiotic resistant callus displayed a yellow-orange colour from which the presence of â-carotene was demonstrated using Raman spectroscopy. Although the regeneration of plants from yellow-orange callus was difficult, 16 transgenic plants were obtained and characterised from callus transformed with ZmUbi-APys2a alone. At least 50% of the T1 seeds developed a yellow-orange coloured callus which was found to contain levels of â-carotene ranging from 4.6-fold to 72-fold higher than that in non-transgenic rice callus. Using the seed-specific Gt1 promoter, 38 transgenic rice plants were generated from APsy2a-CrtI-transformed callus while 32 plants were regenerated from ZmPsy1-CrtI-transformed callus. However, when analysed for presence of transgene by PCR, all transgenic plants contained the APsy2a, ZmPsy1 or CrtI transgene, with none of the plants found to be co-transformed. Using Raman spectroscopy, no â-carotene was detected in-situ in representative T1 seeds. To investigate the potential of the banana-derived ferritin gene (BanFer1) to enhance iron content, rice callus was transformed with constitutively expressed BanFer1 using the soybean ferritin gene (SoyFer) as a control. A total of 12 and 11 callus lines independently transformed with BanFer1 and SoyFer, respectively, were multiplied and transgene expression was verified by RT-PCR. Pearl’s Prussian blue staining for in-situ detection of ferric iron showed a stronger blue colour in rice callus transformed with BanFer1 compared to SoyFer. Using flame atomic absorption spectrometry, the highest mean amount of iron quantified in callus transformed with BanFer1 was 30-fold while that obtained using the SoyFer was 14-fold higher than the controls. In addition, ~78% of BanFer1-transgenic callus lines and ~27% of SoyFer-transgenic callus lines had significantly higher iron content than the non-transformed controls. Since the genes used for enhancing micronutrient content need to be expressed in banana fruit, the activity of a range of banana-derived, potentially fruit-active promoters in banana was investigated. Using uidA (GUS) as a reporter gene, the function of the Expansin1 (MaExp1), Expansin1 containing the rice actin intron (MaExp1a), Expansin4 (MaExp4), Extensin (MaExt), ACS (MaACS), ACO (MaACO), Metallothionein (MaMT2a) and phytoene synthase (APsy2a) promoters were transiently analysed in intact banana fruit using two transformation methods, particle bombardment and Agrobacterium-mediated infiltration (agro-infiltration). Although a considerable amount of variation in promoter activity was observed both within and between experiments, similar trends were obtained using both transformation methods. The MaExp1 and MaExp1a directed high levels of GUS expression in banana fruit which were comparable to those observed from the ZmUbi and Banana bunchy top virus-derived BT4 promoters that were included as positive controls. Lower levels of promoter activity were obtained in both methods using the MaACO and MaExt promoters while the MaExp4, MaACS, and APsy2a promoters directed the lowest GUS activity in banana fruit. An attempt was subsequently made to use agro-infiltration to assess the expression of pVA biosynthesis genes in banana fruit by infiltrating fruit with constructs in which the ZmUbi promoter controlled the expression of APsy2a +/- CrtI, and with the maize phytoene synthase gene (ZmPsy1) included as a control. Unfortunately, the large amount of variation and inconsistency observed within and between experiments precluded any meaningful conclusions to be drawn. The final component of this research was to assess the level of promoter activity and specificity in non-target tissue. These analyses were done on leaves obtained from glasshouse-grown banana plants stably transformed with MaExp1, MaACO, APsy2a, BT4 and ZmUbi promoters driving the expression of the GUS gene in addition to leaves from a selection of the same transgenic plants which were growing in a field trial in North Queensland. The results from both histochemical and fluorometric GUS assays showed that the MaExp1 and MaACO promoters directed very low GUS activities in leaves of stably transformed banana plants compared to the constitutive ZmUbi and BT4 promoters. In summary, the results from this research provide evidence that the banana phytoene synthase gene (APsy2a) and the banana ferritin gene (BanFer1) are functional, since the constitutive over-expression of each of these transgenes led to increased levels of pVA carotenoids (for APsy2a) and iron content (for BanFer1) in transgenic rice callus. Further work is now required to determine the functionality of these genes in stably-transformed banana fruit. This research also demonstrated that the MaExp1 and MaACO promoters are fruit-active but have low activity in non-target tissue (leaves), characteristics that make them potentially useful for the biofortification of banana fruit. Ultimately, however, analysis of fruit from field-grown transgenic plants will be required to fully evaluate the suitability of pVA biosynthesis genes and the fruit-active promoters for fruit biofortification.
Resumo:
Some minerals are colloidal and are poorly diffracting . Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of minerals. Among this group of minerals is zykaite with formula Fe4(AsO4)(SO4)(OH)•15H2O. The objective of this research is to determine the molecular structure of the mineral zykaite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43-, SO42- and water stretching vibrations. The sharp band at 3515 cm-1 is assigned to the stretching vibration of the OH units. This mineral offers a mechanism for the formation of more crystalline minerals such as scorodite and bukovskyite. Arsenate ions can be removed from aqueous systems through the addition of ferric compounds such as ferric chloride. This results in the formation of minerals such as zykaite and pitticite (Fe3+,AsO4,SO4,H2O).
Resumo:
Soluble organic matter derived from exotic Pinus vegetation forms stronger complexes with iron (Fe) than the soluble organic matter derived from most native Australian species. This has lead to concern about the environmental impacts related to the establishment of extensive exotic Pinus plantations in coastal southeast Queensland, Australia. It has been suggested that the Pinus plantations may enhance the solubility of Fe in soils by increasing the amount of organically complexed Fe. While this remains inconclusive, the environmental impacts of an increased flux of dissolved, organically complexed Fe from soils to the fluvial system and then to sensitive coastal ecosystems are potentially damaging. Previous work investigated a small number of samples, was largely laboratory based and had limited application to field conditions. These assessments lacked field-based studies, including the comparison of the soil water chemistry of sites associated with Pinus vegetation and undisturbed native vegetation. In addition, the main controls on the distribution and mobilisation of Fe in soils of this subtropical coastal region have not been determined. This information is required in order to better understand the relative significance of any Pinus enhanced solubility of Fe. The main aim of this thesis is to determine the controls on Fe distribution and mobilisation in soils and soil waters of a representative coastal catchment in southeast Queensland (Poona Creek catchment, Fraser Coast) and to test the effect of Pinus vegetation on the solubility and speciation of Fe. The thesis is structured around three individual papers. The first paper identifies the main processes responsible for the distribution and mobilisation of labile Fe in the study area and takes a catchment scale approach. Physicochemical attributes of 120 soil samples distributed throughout the catchment are analysed, and a new multivariate data analysis approach (Kohonen’s self organising maps) is used to identify the conditions associated with high labile Fe. The second paper establishes whether Fe nodules play a major role as an iron source in the catchment, by determining the genetic mechanism responsible for their formation. The nodules are a major pool of Fe in much of the region and previous studies have implied that they may be involved in redox-controlled mobilisation and redistribution of Fe. This is achieved by combining a detailed study of a ferric soil profile (morphology, mineralogy and micromorphology) with the distribution of Fe nodules on a catchment scale. The third component of the thesis tests whether the concentration and speciation of Fe in soil solutions from Pinus plantations differs significantly from native vegetation soil solutions. Microlysimeters are employed to collect unaltered, in situ soil water samples. The redox speciation of Fe is determined spectrophotometrically and the interaction between Fe and dissolved organic matter (DOM) is modelled with the Stockholm Humic Model. The thesis provides a better understanding of the controls on the distribution, concentration and speciation of Fe in the soils and soil waters of southeast Queensland. Reductive dissolution is the main mechanism by which mobilisation of Fe occurs in the study area. Labile Fe concentrations are low overall, particularly in the sandy soils of the coastal plain. However, high labile Fe is common in seasonally waterlogged and clay-rich soils which are exposed to fluctuating redox conditions and in organic-rich soils adjacent to streams. Clay-rich soils are most common in the upper parts of the catchment. Fe nodules were shown to have a negligible role in the redistribution of dissolved iron in the catchment. They are formed by the erosion, colluvial transport and chemical weathering of iron-rich sandstones. The ferric horizons, in which nodules are commonly concentrated, subsequently form through differential biological mixing of the soil. Whereas dissolution/ reprecipitation of the Fe cements is an important component of nodule formation, mobilised Fe reprecipitates locally. Dissolved Fe in the soil waters is almost entirely in the ferrous form. Vegetation type does not affect the concentration and speciation of Fe in soil waters, although Pinus DOM has greater acidic functional group site densities than DOM from native vegetation. Iron concentrations are highest in the high DOM soil waters collected from sandy podosols, where they are controlled by redox potential. Iron concentrations are low in soil solutions from clay and iron oxide rich soils, in spite of similar redox potentials. This is related to stronger sorption to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for microbial metabolisation and reductive dissolution of Fe. Modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxidising conditions. Thus, inputs of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides and increase the flux of dissolved iron out of the catchment. Such inputs are most likely from the lower catchment, where podosols planted with Pinus are most widely distributed. Significant outcomes other than the main aims were also achieved. It is shown that mobilisation of Fe in podosols can occur as dissolved Fe(II) rather than as Fe(III)-organic complexes. This has implications for the large body of work which assumes that Fe(II) plays a minor role. Also, the first paper demonstrates that a data analysis approach based on Kohonen’s self organising maps can facilitate the interpretation of complex datasets and can help identify geochemical processes operating on a catchment scale.
Resumo:
Soluble organic matter derived from exotic Pinus species has been shown to form stronger complexes with iron (Fe) than that derived from most native Australian species. It has also been proposed that the establishment of exotic Pinus plantations in coastal southeast Queensland may have enhanced the solubility of Fe in soils by increasing the amount of organically complexed Fe, but this remains inconclusive. In this study we test whether the concentration and speciation of Fe in soil water from Pinus plantations differs significantly from soil water from native vegetation areas. Both Fe redox speciation and the interaction between Fe and dissolved organic matter (DOM) were considered; Fe - DOM interaction was assessed using the Stockholm Humic Model. Iron concentrations (mainly Fe 2+) were greatest in the soil waters with the greatest DOM content collected from sandy podosols (Podzols), where they are largely controlled by redox potential. Iron concentrations were small in soil waters from clay and iron oxide-rich soils, in spite of similar redox potentials. This condition is related to stronger sorption on to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for electron shuttling and microbial metabolism, restricting reductive dissolution of Fe. Vegetation type had no significant influence on the concentration and speciation of iron in soil waters, although DOM from Pinus sites had greater acidic functional group site densities than DOM from native vegetation sites. This is because Fe is mainly in the ferrous form, even in samples from the relatively well-drained podosols. However, modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxic conditions. Therefore, the input of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides (ferrihydrite) and increase the flux of dissolved Fe out of the catchment. Such inputs of iron are most probably derived from podosols planted with Pinus.
Resumo:
Goethite and Al-substituted goethite were synthesized from the reaction between ferric nitrate and/or aluminum nitrate and potassium hydroxide. XRF, XRD, TEM with EDS were used to characterize the chemical composition, phase and lattice parameters, and morphology of the synthesized products. The results show that d(020) decreases from 4.953 to 4.949 Å and the b dimension decreases from 9.951 Å to 9.906 Å when the aging time increases from 6 days to 42 days for 9.09 mol% Al-substituted goethite. A sample with 9.09 mol% Al substitution in Al-substituted goethite was prepared by a rapid co-precipitation method. In the sample, 13.45 mol%, 12.31 mol% and 5.85 mol% Al substitution with a crystal size of 163, 131, and 45 nm are observed as shown in the TEM images and EDS. The crystal size of goethite is positively related to the degree of Al substitution according to the TEM images and EDS results. Thus, this methodology is proved to be effective to distinguish the morphology of goethite and Al substituted goethite.
Resumo:
The mineral tooeleite Fe6(AsO3)4SO4(OH)4�4H2O is secondary ferric arsenite sulphate mineral which has environmental significance for arsenic remediation because of its high stability in the regolith. The mineral has been studied by X-ray diffraction (XRD), infrared (IR) and Raman spectroscopy. The XRD result indicates tooeleite can form more crystalline solids in an acid environment than in an alkaline environment. Infrared spectroscopy identifies moderately intense band at 773 cm�1 assigned to AsO3� 3 symmetric stretching vibration. Raman spectroscopy identifies three bands at 803, 758 and 661 cm�1 assigned to the symmetric and antisymmetric stretching vibrations of AsO3� 3 and As-OH stretching vibration respectively. In addition, the infrared bands observed at 1116, 1040, 1090, 981 and 616 cm�1, are assigned to the m3, m1 and m4 modes of SO2� 4 . The same bands are observed at 1287, 1085, 983 and 604 cm�1 in the Raman spectrum. As3d band at binding energy of 44.05 eV in XPS confirms arsenic valence of tooeleite is +3. These characteristic bands in the IR and Raman spectra provide useful basis for identifying the mineral tooeleite.
Resumo:
Successive alkalinity producing systems (SAPSs) are widely used for treating acid mine drainage (AMD) and alleviating clogging commonly occurring in limestone systems due to an amorphous ferric precipitate. In this study, iron dust, bone char, micrite and their admixtures were used to treat arseniccontaining AMD. A particular interest was devoted to arsenic removal performance, mineralogical constraints on arsenic retention ability and permeability variation during column experiment for 140 days. The results showed that the sequence of the arsenic removal capacity was as follows: bone char > micrite > iron dust. The combination of 20% v/v iron dust and 80% v/v bone char/micrite columns can achieve better hydraulic conductivity and phosphorus-retention capacity than single micrite and bone char columns. The addition of iron dust created reductive environment and resulted in the transformation of coating material from colloidal phase to secondary mineral phase, such as green rust and phosphoerrite, which obviously ameliorates hydraulic conductivity of systems. The sequential extraction experiments indicated that the stable fractions of arsenic in columns were enhanced with help of iron dust compared to single bone char and micrite columns. A combination of iron dust and micrite/bone char represented a potential SAPS for treating As-containing AMD.
Resumo:
Bauxite refinery residues are derived from the Bayer process by the digestion of crushed bauxite in concentrated caustic at elevated temperatures. Chemically, it comprises, in varying amounts (depending upon the composition of the starting bauxite), oxides of iron and titanium, residual alumina, sodalite, silica, and minor quantities of other metal oxides. Bauxite residues are being neutralised by seawater in recent years to reduce the alkalinity in bauxite residue, through the precipitation of hydrotalcite-like compounds and some other Mg, Ca, and Al hydroxide and carbonate minerals. A combination of X-ray diffraction (XRD) and vibrational spectroscopy techniques, including mid-infrared (IR), Raman, near-infrared (NIR), and UV-Visible, have been used to characterise bauxite residue and seawater neutralised bauxite residue. Both the ferrous (Fe2+) and ferric (Fe3+) ions within bauxite residue can be identified by their characteristic NIR bands, where ferrous ions produce a strong absorption band at around 9000 cm-1, while ferric ions produce two strong bands at 25000 and 14300 cm-1. The presence of adsorbed carbonate and hydroxide anions can be identified at around 5200 and 7000 cm-1, respectively, attributed to the 2nd overtone of the 1st fundamental overtones observed in the mid-IR spectra. The complex bands in the Raman and mid-IR spectra around 3500 cm-1 are assigned to the OH stretching vibrations of the various oxides present in bauxite residue, and water. The combination of carbonate and hydroxyl units and their fundamental overtones give rise to many of the features of the NIR spectra.
Resumo:
The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11⋅3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm−1 and 1014 cm−1. These bands are attributed to the PO43− ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm−1 are attributed to the ν3 antisymmetric stretching bands of the PO43− and HOPO32− units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm−1are assigned to the PO43− ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm−1 are attributed to the PO43− and HOPO32− ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm−1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm−1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm−1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.
Resumo:
The molecular mechanisms that define asymptomatic bacteriuria (ABU) Escherichia coli colonization of the human urinary tract remain to be properly elucidated. Here, we utilize ABU E. coli strain 83972 as a model to dissect the contribution of siderophores to iron acquisition, growth, fitness, and colonization of the urinary tract. We show that E. coli 83972 produces enterobactin, salmochelin, aerobactin, and yersiniabactin and examine the role of these systems using mutants defective in siderophore biosynthesis and uptake. Enterobactin and aerobactin contributed most to total siderophore activity and growth in defined iron-deficient medium. No siderophores were detected in an 83972 quadruple mutant deficient in all four siderophore biosynthesis pathways; this mutant did not grow in defined iron-deficient medium but grew in iron-limited pooled human urine due to iron uptake via the FecA ferric citrate receptor. In a mixed 1:1 growth assay with strain 83972, there was no fitness disadvantage of the 83972 quadruple biosynthetic mutant, demonstrating its capacity to act as a “cheater” and utilize siderophores produced by the wild-type strain for iron uptake. An 83972 enterobactin/salmochelin double receptor mutant was outcompeted by 83972 in human urine and the mouse urinary tract, indicating a role for catecholate receptors in urinary tract colonization.
Resumo:
Particulates with specific sizes and characteristics can induce potent immune responses by promoting antigen uptake of appropriate immuno-stimulatory cell types. Magnetite (Fe3O4) nanoparticles have shown many potential bioapplications due to their biocompatibility and special characteristics. Here, superparamagnetic Fe3O4 nanoparticles (SPIONs) with high magnetization value (70emug-1) were stabilized with trisodium citrate and successfully conjugated with a model antigen (ovalbumin, OVA) via N,N'-carbonyldiimidazole (CDI) mediated reaction, to achieve a maximum conjugation capacity at approximately 13μgμm-2. It was shown that different mechanisms governed the interactions between the OVA molecules and magnetite nanoparticles at different pH conditions. We evaluated as-synthesized SPION against commercially available magnetite nanoparticles. The cytotoxicity of these nanoparticles was investigated using mammalian cells. The reported CDI-mediated reaction can be considered as a potential approach in conjugating biomolecules onto magnetite or other biodegradable nanoparticles for vaccine delivery.