124 resultados para Ferramentas Lean Manufacturing
em Queensland University of Technology - ePrints Archive
Resumo:
Numerous tools and techniques have been developed to eliminate or reduce waste and carry out Lean concepts in the manufacturing environment. However, in practice, manufacturers encounter difficulties to clearly identify the weaknesses of the existing processes in order to address them by implementing Lean tools. Moreover, selection and implementation of appropriate Lean strategies to address the problems identified is a challenging task. According best of authors‟ knowledge, there is no method available to quantitatively evaluate the cost and benefits of implementing a Lean strategy to address the weaknesses in the manufacturing process. Therefore, benefits of Lean approaches cannot be clearly established. The authors developed a methodology to quantitatively measure the performances of a manufacturing system in detecting the causes of inefficiencies and to select appropriate Lean strategies to address the problems identified. The proposed methodology demonstrates that the Lean strategies should be implemented based on the contexts of the organization and identified problem in order to achieve maximum cost benefits. Finally, a case study has been presented to demonstrate how the procedure developed works in practical situation.
Resumo:
In this paper, the level of lean manufacturing implementation by Saudi manufacturing companies is investigated, the extent of application of lean manufacturing practice is identified and the benefits and barriers of Lean implementation are evaluated. The results reported in this paper are based on data collected from a survey using a standard questionnaire administered to 120 manufacturers in Saudi Arabia. Evidence indicates that large size companies are more likely to implement and gain the advantages of lean manufacturing than small and medium size companies. The most implemented lean manufacturing tools are Computerized Planning Systems, TQM, Maintenance Optimization and CIP. Main barriers against lean manufacturing implementation include the organization culture, lack of management commitment and lack of skilled workers. Results also show that benefits gained from lean manufacturing implementation are significant and are correlated with the level of implementation of lean strategies.
Resumo:
Lean strategies have been developed to eliminate or reduce manufacturing waste and thus improve operational efficiency in manufacturing processes. However, implementing lean strategies requires a large amount of resources and, in practice, manufacturers encounter difficulties in selecting appropriate lean strategies within their resource constraints. There is currently no systematic methodology available for selecting appropriate lean strategies within a manufacturer's resource constraints. In the lean transformation process, it is also critical to measure the current and desired leanness levels in order to clearly evaluate lean implementation efforts. Despite the fact that many lean strategies are utilized to reduce or eliminate manufacturing waste, little effort has been directed towards properly assessing the leanness of manufacturing organizations. In practice, a single or specific group of metrics (either qualitative or quantitative) will only partially measure the overall leanness. Existing leanness assessment methodologies do not offer a comprehensive evaluation method, integrating both quantitative and qualitative lean measures into a single quantitative value for measuring the overall leanness of an organization. This research aims to develop mathematical models and a systematic methodology for selecting appropriate lean strategies and evaluating the leanness levels in manufacturing organizations. Mathematical models were formulated and a methodology was developed for selecting appropriate lean strategies within manufacturers' limited amount of available resources to reduce their identified wastes. A leanness assessment model was developed by using the fuzzy concept to assess the leanness level and to recommend an optimum leanness value for a manufacturing organization. In the proposed leanness assessment model, both quantitative and qualitative input factors have been taken into account. Based on program developed in MATLAB and C#, a decision support tool (DST) was developed for decision makers to select lean strategies and evaluate the leanness value based on the proposed models and methodology hence sustain the lean implementation efforts. A case study was conducted to demonstrate the effectiveness of these proposed models and methodology. Case study results suggested that out of 10 wastes identified, the case organization (ABC Limited) is able to improve a maximum of six wastes from the selected workstation within their resource limitations. The selected wastes are: unnecessary motion, setup time, unnecessary transportation, inappropriate processing, work in process and raw material inventory and suggested lean strategies are: 5S, Just-In-Time, Kanban System, the Visual Management System (VMS), Cellular Manufacturing, Standard Work Process using method-time measurement (MTM), and Single Minute Exchange of Die (SMED). From the suggested lean strategies, the impact of 5S was demonstrated by measuring the leanness level of two different situations in ABC. After that, MTM was suggested as a standard work process for further improvement of the current leanness value. The initial status of the organization showed a leanness value of 0.12. By applying 5S, the leanness level significantly improved to reach 0.19 and the simulation of MTM as a standard work method shows the leanness value could be improved to 0.31. The optimum leanness value of ABC was calculated to be 0.64. These leanness values provided a quantitative indication of the impacts of improvement initiatives in terms of the overall leanness level to the case organization. Sensitivity analsysis and a t-test were also performed to validate the model proposed. This research advances the current knowledge base by developing mathematical models and methodologies to overcome lean strategy selection and leanness assessment problems. By selecting appropriate lean strategies, a manufacturer can better prioritize implementation efforts and resources to maximize the benefits of implementing lean strategies in their organization. The leanness index is used to evaluate an organization's current (before lean implementation) leanness state against the state after lean implementation and to establish benchmarking (the optimum leanness state). Hence, this research provides a continuous improvement tool for a lean manufacturing organization.
Resumo:
Lean strategies have been developed to eliminate or reduce waste and thus improve operational efficiency in a manufacturing environment. However, in practice, manufacturers encounter difficulties to select appropriate lean strategies within their resource constraints and to quantitatively evaluate the perceived value of manufacturing waste reduction. This paper presents a methodology developed to quantitatively evaluate the contribution of lean strategies selected to reduce manufacturing wastes within the manufacturers’ resource (time) constraints. A mathematical model has been developed for evaluating the perceived value of lean strategies to manufacturing waste reduction and a step-by-step methodology is provided for selecting appropriate lean strategies to improve the manufacturing performance within their resource constraints. A computer program is developed in MATLAB for finding the optimum solution. With the help of a case study, the proposed methodology and developed model has been validated. A ‘lean strategy-wastes’ correlation matrix has been proposed to establish the relationship between the manufacturing wastes and lean strategies. Using the correlation matrix and applying the proposed methodology and developed mathematical model, authors came out with optimised perceived value of reduction of a manufacturer's wastes by implementing appropriate lean strategies within a manufacturer's resources constraints. Results also demonstrate that the perceived value of reduction of manufacturing wastes can significantly be changed based on policies and product strategy taken by a manufacturer. The proposed methodology can also be used in dynamic situations by changing the input in the programme developed in MATLAB. By identifying appropriate lean strategies for specific manufacturing wastes, a manufacturer can better prioritise implementation efforts and resources to maximise the success of implementing lean strategies in their organisation.
Resumo:
Roofing tile manufacturing is a mass production process with high operational and inventory wastes and costs. Due to huge operational costs, excessive inventory and wastes, and quality problems, roofing tile manufacturers are trying to implement lean manufacturing practice in their operations in order to remain competitive in an ncreasingly competitive global market. The aim of this research is to evaluate the possibility of reducing the operational and inventory costs of the tile manufacturing process through waste minimization. This paper analyses the current waste situation in a tile manufacturing process and develops current and future value stream mapping for such a process with a view to implementing lean principles in manufacturing. The focus of the approach is on cost reduction by eliminating non-value-added activities.
Resumo:
Purpose – The purpose of this paper is to develop an effective methodology for implementing lean manufacturing strategies and a leanness evaluation metric using continuous performance measurement (CPM). Design/methodology/approach – Based on five lean principles, a systematic lean implementation methodology for manufacturing organizations has been proposed. A simplified leanness evaluation metric consisting of both efficiency and effectiveness attributes of manufacturing performance has been developed for continuous evaluation of lean implementation. A case study to validate the proposed methodology has been conducted and proposed CPM metric has been used to assess the manufacturing leanness. Findings – Proposed methodology is able to systematically identify manufacturing wastes, select appropriate lean tools, identify relevant performance indicators, achieve significant performance improvement and establish lean culture in the organization. Continuous performance measurement matrices in terms of efficiency and effectiveness are proved to be appropriate methods for continuous evaluation of lean performance. Research limitations/implications – Effectiveness of the method developed has been demonstrated by applying it in a real life assembly process. However, more tests/applications will be necessary to generalize the findings. Practical implications – Results show that applying the methods developed, managers can successfully identify and remove manufacturing wastes from their production processes. By improving process efficiency, they can optimize their resource allocations. Manufacturers now have a validated step by step methodology for successfully implementing lean strategies. Originality/value – According to the authors’ best knowledge, this is the first known study that proposed a systematic lean implementation methodology based on lean principles and continuous improvement techniques. Evaluation of performance improvement by lean strategies is a critical issue. This study develops a simplified leanness evaluation metric considering both efficiency and effectiveness attributes and integrates it with the lean implementation methodology.
Resumo:
Lean project management is the comprehensive adaption of other lean concept like lean construction, lean manufacturing and lean thinking into project management context. Execution of many similar industrial projects creates the idea of lean project management in companies and rapidly growing in industries. This paper offers the standardization method in order to achieve Lean project management in large scale industrial project. Standardization refers to all activity which makes two projects most identical and unify to each other like standardization of design, reducing output variability, value analysis and strategic management. Although standard project may have minor effi ciency decrease, compare to custom built project; but great advantage of standard project like cost saving, time reduction and quality improvement justify standardization methodology. This paper based on empirical experience in industrial project and theoretical analysis of benefi ts of project standardization.
Resumo:
Numerous tools and techniques have been developed to eliminate or reduce waste and carry out lean concepts in the manufacturing environment. However, appropriate lean tools need to be selected and implemented in order to fulfil the manufacturer needs within their budgetary constraints. As a result, it is important to identify manufacturer needs and implement only those tools, which contribute maximum benefit to their needs. In this research a mathematical model is proposed for maximising the perceived value of manufacturer needs and developed a step-by-step methodology to select best performance metrics along with appropriate lean strategies within the budgetary constraints. With the help of a case study, the proposed model and method have been demonstrated.
Resumo:
A large and growing body of literature has explored corporate environmental sustainability initiatives and their impacts locally, regionally and internationally. While the initiatives provide examples of environmental stewardship and cleaner production, a large proportion of the organisations considered in this literature have ‘sustainable practice’, ‘environmental stewardship’ or similar goals as add-ons to their core business strategy. Furthermore, there is limited evidence of organizations embracing and internalising sustainability principles throughout their activities, products or services. Many challenges and barriers impede outcomes as whole system design or holistic approach to address environmental issues, with some evidence to suggest that targeted initiatives could be useful in making progress. ‘Lean management’ and other lean thinking strategies are often put forward as part of such targeted approaches. Within this context, the authors have drawn on current literature to undertake a review of lean thinking practices and how these influence sustainable business practice, considering the balance of environmental and economic aspects of triple bottom line in sustainability. The review methodology comprised firstly identifying theoretical constructs to be studied, developing criteria for categorising the literature, evaluating the findings within each category and considering the implications of the findings for areas for future research. The evaluation revealed two main areas of consideration: - a) lean manufacturing tools and environmental performance, and; - b) integrated lean and green models and approaches. However the review highlighted the ad hoc use of lean thinking within corporate sustainability initiatives, and established a knowledge gap in the form of a system for being able to consider different categories of environmental impacts in different industries and choose best lean tools or models for a particular problem in a way to ensure holistic exploration. The findings included a specific typology of lean tools for different environmental impacts, drawing from multiple case studies. Within this research context, this paper presents the findings of the review; namely the emerging consensus on the relationships between lean thinking and sustainable business practice. The paper begins with an overview of the current literature regarding lean thinking and its documented role in sustainable business practice. The paper then includes an analysis of lean and green paradigms in different industries; and describes the typology of lean tools used to reduce specific environmental impacts and, integrated lean and green models and approaches. The paper intends to encourage industrial practitioners to consider the merits and potential risks with using specific lean tools to reduce context-specific environmental impacts. It also aims to highlight the potential for further investigation with regard to comparing different industries and conceptualising a generalizable system for ensuring lean thinking initiatives build towards sustainable business practice.
Resumo:
Shrinking product lifecycles, tough international competition, swiftly changing technologies, ever increasing customer quality expectation and demanding high variety options are some of the forces that drive next generation of development processes. To overcome these challenges, design cost and development time of product has to be reduced as well as quality to be improved. Design reuse is considered one of the lean strategies to win the race in this competitive environment. design reuse can reduce the product development time, product development cost as well as number of defects which will ultimately influence the product performance in cost, time and quality. However, it has been found that no or little work has been carried out for quantifying the effectiveness of design reuse in product development performance such as design cost, development time and quality. Therefore, in this study we propose a systematic design reuse based product design framework and developed a design leanness index (DLI) as a measure of effectiveness of design reuse. The DLI is a representative measure of reuse effectiveness in cost, development time and quality. Through this index, a clear relationship between reuse measure and product development performance metrics has been established. Finally, a cost based model has been developed to maximise the design leanness index for a product within the given set of constraints achieving leanness in design process.
Resumo:
Increasing global competitiveness worldwide has forced manufacturing organizations to produce high-quality products more quickly and at a competitive cost. In order to reach these goals, they need good quality components from suppliers at optimum price and lead time. This actually forced all the companies to adapt different improvement practices such as lean manufacturing, Just in Time (JIT) and effective supply chain management. Applying new improvement techniques and tools cause higher establishment costs and more Information Delay (ID). On the contrary, these new techniques may reduce the risk of stock outs and affect supply chain flexibility to give a better overall performance. But industry people are unable to measure the overall affects of those improvement techniques with a standard evaluation model .So an effective overall supply chain performance evaluation model is essential for suppliers as well as manufacturers to assess their companies under different supply chain strategies. However, literature on lean supply chain performance evaluation is comparatively limited. Moreover, most of the models assumed random values for performance variables. The purpose of this paper is to propose an effective supply chain performance evaluation model using triangular linguistic fuzzy numbers and to recommend optimum ranges for performance variables for lean implementation. The model initially considers all the supply chain performance criteria (input, output and flexibility), converts the values to triangular linguistic fuzzy numbers and evaluates overall supply chain performance under different situations. Results show that with the proposed performance measurement model, improvement area for each variable can be accurately identified.
Resumo:
Lean product design has the potential to reduce the overall product development time and cost and can improve the quality of a product. However, it has been found that no or little work has been carried out to provide an integrated framework of "lean design" and to quantitatively evaluate the effectiveness of lean practices/principles in product development process. This research proposed an integrated framework for lean design process and developed a dynamic decision making tool based on Methods Time Measurement (MTM) approach for assessing the impact of lean design on the assembly process. The proposed integrated lean framework demonstrates the lean processes to be followed in the product design and assembly process in order to achieve overall leanness. The decision tool consists of a central database, the lean design guidelines, and MTM analysis. Microsoft Access and C# are utilized to develop the user interface to use the MTM analysis as decision making tool. MTM based dynamic tool is capable of estimating the assembly time, costs of parts and labour of various alternatives of a design and hence is able to achieve optimum design. A case study is conducted to test and validate the functionality of the MTM Analysis as well as to verify the lean guidelines proposed for product development.