10 resultados para Ferdinand I, Emperor of Austria, 1793-1875
em Queensland University of Technology - ePrints Archive
Resumo:
Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the combination of a mechanically stable synthetic framework (PCL scaffolds) and a biomimetic hydrogel (fibrin glue) provides a potential matrix for bone tissue-engineering applications. Comparison of osteogenic differentiation between the two mesenchymal cell sources revealed a similar pattern.
Resumo:
A nationwide survey was made of the time-course incidence of alfalfa mosaic virus (AMV), clover yellow vein virus (CYVV), subterranean clover mottle virus (SCMoV) and subterranean clover red leaf virus (SCRLV) in improved pastures in southern regions of Australia. Averaged over all states, the highest mean incidence recorded for samples infected with individual viruses in either winter or spring was 9.4% for AMV, 5.7% for CYVV, 10.9% for SCMoV and 7.5% for SCRLV. For AMV and SCRLV, there was an increasing trend from spring 1984 to spring 1986. A similar increasing trend for SCMoV was more evident in winter than in spring. For CYVV, no time-course pattern was evident. Results support the proposition that viruses contribute significantly to "clover-decline', a well-known problem in pastures of Trifolium subterraneum. -from Authors
Resumo:
The results of multi-scale numerical simulations of pulsed i-PVD template-assisted nanofabrication of ZnO nanodot arrays on a silicon substrate are presented. The ratios and spatial distributions of the ion fluxes deposited on the lateral and bottom surfaces of the nanopores are computed as a function of the external bias and plasma parameters. The results show that the pulsed bias plays a significant role in the ion current distribution inside the nanopores. The results of numerical experiments of this work suggest that by finely adjusting the pulse voltage, the pulse duration and the duty cycle of the external pulsed bias, the nanopore clogging can be successfully avoided during the deposition and the shapes of the deposited ZnO nanodots can be effectively controlled. A figure is presented.
Resumo:
The results of numerical simulation of plasma-based, porous, template-assisted nanofabrication of Au nanodot arrays on highly-doped silicon taking into account typical electron density of low-temperature plasma of 1017-1018 m-3 and electron temperature of 2-5 eV are reported here. Three-dimensional microscopic topography of ion flux distribution over the outer and inner surfaces of the nanoporous template is obtained via numerical simulation of Au ion trajectories in the plasma sheath, in the close proximity of, and inside the nanopores. It is shown that, by manipulating the electron temperature, the cross-sheath potential drop, and by additionally altering the structure of the nanoporous template, one can control the ion fluxes within the nanopores, and eventually maximize the ion deposition onto the top surface of the developing crystalline Au nanodots (see top panel in the figure). In the same time, this procedure allows one to minimize amorphous deposits on the sidewalls that clutter and may eventually close the nanopores, thus disrupting the nanodot growth process, as it is shown in the bottom panel in the figure on the right.
Resumo:
Objective - To investigate the HLA class I associations of ankylosing spondylitis (AS) in the white population, with particular reference to HLA-B27 subtypes. Methods - HLA-B27 and -B60 typing was performed in 284 white patients with AS. Allele frequencies of HLA-B27 and HLA-B60 from 5926 white bone marrow donors were used for comparison. HLA-B27 subtyping was performed by single strand conformation polymorphism (SSCP) in all HLA-B27 positive AS patients, and 154 HLA-B27 positive ethnically matched blood donors. Results - The strong association of HLA-B27 and AS was confirmed (odds ratio (OR) 171, 95% confidence interval (CI) 135 to 218; p < 10-99). The association of HLA-B60 with AS was confirmed in HLA-B27 positive cases (OR 3.6, 95% CI 2.1 to 6.3; p < 5 x 10-5), and a similar association was demonstrated in HLA-B27 negative AS (OR 3.5, 95% CI 1.1 to 11.4; p < 0.05). No significant difference was observed in the frequencies of HLA-B27 allelic subtypes in patients and controls (HLA-B*2702, three of 172 patients v five of 154 controls; HLA-B*2705, 169 of 172 patients v 147 of 154 controls; HkA-B*2708, none of 172 patients v two of 154 controls), and no novel HLA-B27 alleles were detected. Conclusion - HLA-B27 and -B60 are associated with susceptibility to AS, but differences in BLA-B27 subtype do not affect susceptibility to AS in this white population.
Resumo:
BACKGROUND - High-density lipoprotein (HDL) protects against arterial atherothrombosis, but it is unknown whether it protects against recurrent venous thromboembolism. METHODS AND RESULTS - We studied 772 patients after a first spontaneous venous thromboembolism (average follow-up 48 months) and recorded the end point of symptomatic recurrent venous thromboembolism, which developed in 100 of the 772 patients. The relationship between plasma lipoprotein parameters and recurrence was evaluated. Plasma apolipoproteins AI and B were measured by immunoassays for all subjects. Compared with those without recurrence, patients with recurrence had lower mean (±SD) levels of apolipoprotein AI (1.12±0.22 versus 1.23±0.27 mg/mL, P<0.001) but similar apolipoprotein B levels. The relative risk of recurrence was 0.87 (95% CI, 0.80 to 0.94) for each increase of 0.1 mg/mL in plasma apolipoprotein AI. Compared with patients with apolipoprotein AI levels in the lowest tertile (<1.07 mg/mL), the relative risk of recurrence was 0.46 (95% CI, 0.27 to 0.77) for the highest-tertile patients (apolipoprotein AI >1.30 mg/mL) and 0.78 (95% CI, 0.50 to 1.22) for midtertile patients (apolipoprotein AI of 1.07 to 1.30 mg/mL). Using nuclear magnetic resonance, we determined the levels of 10 major lipoprotein subclasses and HDL cholesterol for 71 patients with recurrence and 142 matched patients without recurrence. We found a strong trend for association between recurrence and low levels of HDL particles and HDL cholesterol. CONCLUSIONS - Patients with high levels of apolipoprotein AI and HDL have a decreased risk of recurrent venous thromboembolism. © 2007 American Heart Association, Inc.
Resumo:
"I still dream of my grandfather's red roses" is an online audio documentary. Asking people from her community to make a statement beginning with the words "I dream of", Australian documentarist Phoebe Hart curates these fragments and creatively envisages the literal and figurative world of dreams, arresting our collective hopes, desires and fears.
Resumo:
In his book, The Emperor of All Maladies, Siddhartha Mukherjee writes a history of cancer — "It is a chronicle of an ancient disease — once a clandestine, 'whispered-about' illness — that has metamorphosed into a lethal shape-shifting entity imbued with such penetrating metaphorical, medical, scientific, and political potency that cancer is often described as the defining plague of our generation." Increasingly, an important theme in the history of cancer is the role of law, particularly in the field of intellectual property law. It is striking that a number of contemporary policy debates over intellectual property and public health have concerned cancer research, diagnosis, and treatment. In the area of access to essential medicines, there has been much debate over Novartis’ patent application in respect of Glivec, a treatment for leukaemia. India’s Supreme Court held that the Swiss company’s patent application violated a safeguard provision in India’s patent law designed to stop evergreening. In the field of tobacco control, the Australian Government introduced plain packaging for tobacco products in order to address the health burdens associated with the tobacco epidemic. This regime was successfully defended in the High Court of Australia. In the area of intellectual property and biotechnology, there have been significant disputes over the Utah biotechnology company Myriad Genetics and its patents in respect of genetic testing for BRCA1 and BRCA2, which are related to breast cancer and ovarian cancer. The Federal Court of Australia handed down a decision on the validity of Myriad Genetics’ patent in respect of genetic testing for BRCA1 in February 2013. The Supreme Court of the United States heard a challenge to the validity of Myriad Genetics’ patents in this area in April 2013, and handed down a judgment in July 2013. Such disputes have involved tensions between intellectual property rights, and public health. This article focuses upon one of these important test cases involving intellectual property, public health, and cancer research. In June 2010, Cancer Voices Australia and Yvonne D’Arcy brought an action in the Federal Court of Australia against the validity of a BRCA1 patent — held by Myriad Genetics Inc, the Centre de Recherche du Chul, the Cancer Institute of Japan and Genetic Technologies Limited. Yvonne D’Arcy — a Brisbane woman who has had treatment for breast cancer — maintained: "I believe that what they are doing is morally and ethically corrupt and that big companies should not control any parts of the human body." She observed: "For my daughter, I've had her have [sic] mammograms, etc, because of me but I would still like her to be able to have the test to see if the mutation gene is in there from me." The applicants made the following arguments: "Genes and the information represented by human gene sequences are products of nature universally present in each individual, and the information content of a human gene sequence is fixed. Genetic variations or mutations are products of nature. The isolation of the BRCA1 gene mutation from the human body constitutes no more than a medical or scientific discovery of a naturally occurring phenomenon and does not give rise to a patentable invention." The applicants also argued that "the alleged invention is not a patentable invention in that, so far as claimed in claims 1–3, it is not a manner of manufacture within the meaning of s 6 of the Statute of Monopolies". The applicants suggested that "the alleged invention is a mere discovery". Moreover, the applicants contended that "the alleged invention of each of claims 1-3 is not a patentable invention because they are claims for biological processes for the generation of human beings". The applicants, though, later dropped the argument that the patent claims related to biological processes for the generation of human beings. In February 2013, Nicholas J of the Federal Court of Australia considered the case brought by Cancer Voices Australia and Yvonne D’Arcy against Myriad Genetics. The judge presented the issues in the case, as follows: "The issue that arises in this case is of considerable importance. It relates to the patentability of genes, or gene sequences, and the practice of 'gene patenting'. Briefly stated, the issue to be decided is whether under the Patents Act 1990 (Cth) a valid patent may be granted for a claim that covers naturally occurring nucleic acid — either deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) — that has been 'isolated'". In this context, the word "isolated" implies that naturally occurring nucleic acid found in the cells of the human body, whether it be DNA or RNA, has been removed from the cellular environment in which it naturally exists and separated from other cellular components also found there. The genes found in the human body are made of nucleic acid. The particular gene with which the patent in suit is concerned (BRCA1) is a human breast and ovarian cancer disposing gene. Various mutations that may be present in this gene have been linked to various forms of cancer including breast cancer and ovarian cancer.' The judge held in this particular case that Myriad Genetics’ patent claims were a "manner of manufacture" under s 6 of the Statute of Monopolies and s 18(1)(a) of the Patents Act 1990 (Cth). The matter is currently under appeal in the Full Court of the Federal Court of Australia. This article interprets the dispute over Myriad Genetics in light of the scholarly work of Nobel Laureate Professor Joseph Stiglitz on inequality. Such work has significant explanatory power in the context of intellectual property and biotechnology. First, Stiglitz has contended that "societal inequality was a result not just of the laws of economics, but also of how we shape the economy — through politics, including through almost every aspect of our legal system". Stiglitz is concerned that "our intellectual property regime … contributes needlessly to the gravest form of inequality." He maintains: "The right to life should not be contingent on the ability to pay." Second, Stiglitz worries that "some of the most iniquitous aspects of inequality creation within our economic system are a result of 'rent-seeking': profits, and inequality, generated by manipulating social or political conditions to get a larger share of the economic pie, rather than increasing the size of that pie". He observes that "the most iniquitous aspect of this wealth appropriation arises when the wealth that goes to the top comes at the expense of the bottom." Third, Stiglitz comments: "When the legal regime governing intellectual property rights is designed poorly, it facilitates rent-seeking" and "the result is that there is actually less innovation and more inequality." He is concerned that intellectual property regimes "create monopoly rents that impede access to health both create inequality and hamper growth more generally." Finally, Stiglitz has recommended: "Government-financed research, foundations, and the prize system … are alternatives, with major advantages, and without the inequality-increasing disadvantages of the current intellectual property rights system.’" This article provides a critical analysis of the Australian litigation and debate surrounding Myriad Genetics’ patents in respect of genetic testing for BRCA1. First, it considers the ruling of Nicholas J in the Federal Court of Australia that Myriad Genetics’ patent was a manner of manufacture as it related to an artificially created state of affairs, and not mere products of nature. Second, it examines the policy debate over gene patents in Australia, and its relevance to the litigation involving Myriad Genetics. Third, it examines comparative law, and contrasts the ruling by Nicholas J in the Federal Court of Australia with developments in the United States, Canada, and the European Union. Fourth, this piece considers the reaction to the decision of Nicholas at first instance in Australia. Fifth, the article assesses the prospects of an appeal to the Full Federal Court of Australia over the Myriad Genetics’ patents. Finally, this article observes that, whatever happens in respect of litigation against Myriad Genetics, there remains controversy over Genetic Technologies Limited. The Melbourne firm has been aggressively licensing and enforcing its related patents on non-coding DNA and genomic mapping.