230 resultados para Feature extraction

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of appropriate features to characterise an output class or object is critical for all classification problems. In order to find optimal feature descriptors for vegetation species classification in a power line corridor monitoring application, this article evaluates the capability of several spectral and texture features. A new idea of spectral–texture feature descriptor is proposed by incorporating spectral vegetation indices in statistical moment features. The proposed method is evaluated against several classic texture feature descriptors. Object-based classification method is used and a support vector machine is employed as the benchmark classifier. Individual tree crowns are first detected and segmented from aerial images and different feature vectors are extracted to represent each tree crown. The experimental results showed that the proposed spectral moment features outperform or can at least compare with the state-of-the-art texture descriptors in terms of classification accuracy. A comprehensive quantitative evaluation using receiver operating characteristic space analysis further demonstrates the strength of the proposed feature descriptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel technique for the tracking of moving lips for the purpose of speaker identification. In our system, a model of the lip contour is formed directly from chromatic information in the lip region. Iterative refinement of contour point estimates is not required. Colour features are extracted from the lips via concatenated profiles taken around the lip contour. Reduction of order in lip features is obtained via principal component analysis (PCA) followed by linear discriminant analysis (LDA). Statistical speaker models are built from the lip features based on the Gaussian mixture model (GMM). Identification experiments performed on the M2VTS1 database, show encouraging results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature extraction and selection are critical processes in developing facial expression recognition (FER) systems. While many algorithms have been proposed for these processes, direct comparison between texture, geometry and their fusion, as well as between multiple selection algorithms has not been found for spontaneous FER. This paper addresses this issue by proposing a unified framework for a comparative study on the widely used texture (LBP, Gabor and SIFT) and geometric (FAP) features, using Adaboost, mRMR and SVM feature selection algorithms. Our experiments on the Feedtum and NVIE databases demonstrate the benefits of fusing geometric and texture features, where SIFT+FAP shows the best performance, while mRMR outperforms Adaboost and SVM. In terms of computational time, LBP and Gabor perform better than SIFT. The optimal combination of SIFT+FAP+mRMR also exhibits a state-of-the-art performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automated feature extraction and correspondence determination is an extremely important problem in the face recognition community as it often forms the foundation of the normalisation and database construction phases of many recognition and verification systems. This paper presents a completely automatic feature extraction system based upon a modified volume descriptor. These features form a stable descriptor for faces and are utilised in a reversible jump Markov chain Monte Carlo correspondence algorithm to automatically determine correspondences which exist between faces. The developed system is invariant to changes in pose and occlusion and results indicate that it is also robust to minor face deformations which may be present with variations in expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As of today, opinion mining has been widely used to iden- tify the strength and weakness of products (e.g., cameras) or services (e.g., services in medical clinics or hospitals) based upon people's feed- back such as user reviews. Feature extraction is a crucial step for opinion mining which has been used to collect useful information from user reviews. Most existing approaches only find individual features of a product without the structural relationships between the features which usually exists. In this paper, we propose an approach to extract features and feature relationship, represented as tree structure called a feature hi- erarchy, based on frequent patterns and associations between patterns derived from user reviews. The generated feature hierarchy profiles the product at multiple levels and provides more detailed information about the product. Our experiment results based on some popularly used review datasets show that the proposed feature extraction approach can identify more correct features than the baseline model. Even though the datasets used in the experiment are about cameras, our work can be ap- plied to generate features about a service such as the services in hospitals or clinics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sparse optical flow algorithms, such as the Lucas-Kanade approach, provide more robustness to noise than dense optical flow algorithms and are the preferred approach in many scenarios. Sparse optical flow algorithms estimate the displacement for a selected number of pixels in the image. These pixels can be chosen randomly. However, pixels in regions with more variance between the neighbours will produce more reliable displacement estimates. The selected pixel locations should therefore be chosen wisely. In this study, the suitability of Harris corners, Shi-Tomasi's “Good features to track", SIFT and SURF interest point extractors, Canny edges, and random pixel selection for the purpose of frame-by-frame tracking using a pyramidical Lucas-Kanade algorithm is investigated. The evaluation considers the important factors of processing time, feature count, and feature trackability in indoor and outdoor scenarios using ground vehicles and unmanned aerial vehicles, and for the purpose of visual odometry estimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double-pulse tests are commonly used as a method for assessing the switching performance of power semiconductor switches in a clamped inductive switching application. Data generated from these tests are typically in the form of sampled waveform data captured using an oscilloscope. In cases where it is of interest to explore a multi-dimensional parameter space and corresponding result space it is necessary to reduce the data into key performance metrics via feature extraction. This paper presents techniques for the extraction of switching performance metrics from sampled double-pulse waveform data. The reported techniques are applied to experimental data from characterisation of a cascode gate drive circuit applied to power MOSFETs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an overview of the QUT plant classification system submitted to LifeCLEF 2014. This system uses generic features extracted from a convolutional neural network previously used to perform general object classification. We examine the effectiveness of these features to perform plant classification when used in combination with an extremely randomised forest. Using this system, with minimal tuning, we obtained relatively good results with a score of 0:249 on the test set of LifeCLEF 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents 'vSpeak', the first initiative taken in Pakistan for ICT enabled conversion of dynamic Sign Urdu gestures into natural language sentences. To realize this, vSpeak has adopted a novel approach for feature extraction using edge detection and image compression which gives input to the Artificial Neural Network that recognizes the gesture. This technique caters for the blurred images as well. The training and testing is currently being performed on a dataset of 200 patterns of 20 words from Sign Urdu with target accuracy of 90% and above.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A building information model (BIM) provides a rich representation of a building's design. However, there are many challenges in getting construction-specific information from a BIM, limiting the usability of BIM for construction and other downstream processes. This paper describes a novel approach that utilizes ontology-based feature modeling, automatic feature extraction based on ifcXML, and query processing to extract information relevant to construction practitioners from a given BIM. The feature ontology generically represents construction-specific information that is useful for a broad range of construction management functions. The software prototype uses the ontology to transform the designer-focused BIM into a construction-specific feature-based model (FBM). The formal query methods operate on the FBM to further help construction users to quickly extract the necessary information from a BIM. Our tests demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Guaranteeing the quality of extracted features that describe relevant knowledge to users or topics is a challenge because of the large number of extracted features. Most popular existing term-based feature selection methods suffer from noisy feature extraction, which is irrelevant to the user needs (noisy). One popular method is to extract phrases or n-grams to describe the relevant knowledge. However, extracted n-grams and phrases usually contain a lot of noise. This paper proposes a method for reducing the noise in n-grams. The method first extracts more specific features (terms) to remove noisy features. The method then uses an extended random set to accurately weight n-grams based on their distribution in the documents and their terms distribution in n-grams. The proposed approach not only reduces the number of extracted n-grams but also improves the performance. The experimental results on Reuters Corpus Volume 1 (RCV1) data collection and TREC topics show that the proposed method significantly outperforms the state-of-art methods underpinned by Okapi BM25, tf*idf and Rocchio.