184 resultados para FILLED POLYPROPYLENE
em Queensland University of Technology - ePrints Archive
Resumo:
Free-radical processes underpin the thermo-oxidative degradation of polyolefins. Thus, to extend the lifetime of these polymers, stabilizers are generally added during processing to scavenge the free radicals formed as the polymer degrades. Nitroxide radical precursors, such as hindered amine stabilizers (HAS),1,2 are common polypropylene additives as the nitroxide moiety is a potent scavenger of polymer alkyl radicals (R¥). Oxidation of HAS by radicals formed during polypropylene degradation yields nitroxide radicals (RRNO¥), which rapidly trap the polymer degradation species to produce alkoxyamines, thus retarding oxidative polymer degradation. This increase in polymer stability is demonstrated by a lengthening of the “induction period” of the polymer (the time prior to a sharp rise in the oxidation of the polymer). Instrumental techniques such as chemiluminescence or infrared spectroscopy are somewhat limited in detecting changes in the polymer during the initial stages of degradation. Therefore, other methods for observing polymer degradation have been sought as the useful life of a polymer does not extend far beyond its “induction period”
Resumo:
An installation of sculptural works that continues the artist's exploration of self-portraiture. Comprising a series of triadic structures (bust, socle and plaster residue) the works propose a formal and conceptual equivalence between the portrait bust and traces of its technical and historical origins. Arranged haphazardly in the space, the resultant works speak of the exhaustion of portraiture as a genre while simultaneously attesting to an autogenic notion of practice in which portraiture acts as a vital catalyst.
Resumo:
Foam-filled conical tubes have recently emerged as efficient energy absorbing devices to mitigate the adverse effects of impacts. The primary aim of this thesis was to generate research and design information on the impact and energy absorption response of empty and foam-filled conical tubes, and to facilitate their application in energy absorbing systems under axial and oblique loading conditions representative of those typically encountered in crashworthiness and impact applications. Finite element techniques supported by experiments and existing results were used in the investigation. Major findings show that the energy absorption response can be effectively controlled by varying geometry and material parameters. A useful empirical formula was developed for providing engineering designers with an initial estimate of the load ratio and hence energy absorption performances of these devices. It was evident that foam-filled conical tubes enhance the energy absorption capacity and stabilise the crush response for both axial and oblique impact loading without a significant increase in the initial peak load. This is practically beneficial when higher kinetic energy needs to be absorbed, thus reducing the impact force transmitted to the protected structure and occupants. Such tubes also increase and maintain the energy absorption capacity under global bending as well as minimise the reduction of energy absorption capacity with increasing load angle. Furthermore, the results also highlight the feasibility of adding a foam-filled conical tube as a supplementary device in energy absorbing systems, since the overall energy absorption performance of such systems can be favourably enhanced by only including a relatively small energy absorbing device. Above all, the results demonstrate the superior performance of foam-filled conical tube for mitigating impact energy in impact and crashworthiness applications.
Resumo:
This paper treats the crush behaviour and energy absorption response of foam-filled conical tubes subjected to oblique impact loading. Dynamic computer simulation techniques validated by experimental testing are used to carry out a parametric study of such devices. The study aims at quantifying the energy absorption of empty and foam-filled conical tubes under oblique impact loading, for variations in the load angle and geometry parameters of the tube. It is evident that foam-filled conical tubes are preferable as impact energy absorbers due to their ability to withstand oblique impact loads as effectively as axial impact loads. Furthermore, it is found that the energy absorption capacity of filled tubes is better maintained compared to that of empty tubes as the load orientation increases. The primary outcome of this study is design information for the use of foam-filled conical tubes as energy absorbers where oblique impact loading is expected.
Resumo:
Power transformers are one of the most important and costly equipment in power generation, transmission and distribution systems. Current average age of transformers in Australia is around 25 years and there is a strong economical tendency to use them up to 50 years or more. As the transformers operate, they get degraded due to different loading and environmental operating stressed conditions. In today‘s competitive energy market with the penetration of distributed energy sources, the transformers are stressed more with minimum required maintenance. The modern asset management program tries to increase the usage life time of power transformers with prognostic techniques using condition indicators. In the case of oil filled transformers, condition monitoring methods based on dissolved gas analysis, polarization studies, partial discharge studies, frequency response analysis studies to check the mechanical integrity, IR heat monitoring and other vibration monitoring techniques are in use. In the current research program, studies have been initiated to identify the degradation of insulating materials by the electrical relaxation technique known as dielectrometry. Aging leads to main degradation products like moisture and other oxidized products due to fluctuating thermal and electrical loading. By applying repetitive low frequency high voltage sine wave perturbations in the range of 100 to 200 V peak across available terminals of power transformer, the conductive and polarization parameters of insulation aging are identified. An in-house novel digital instrument is developed to record the low leakage response of repetitive polarization currents in three terminals configuration. The technique is tested with known three transformers of rating 5 kVA or more. The effects of stressing polarization voltage level, polarizing wave shapes and various terminal configurations provide characteristic aging relaxation information. By using different analyses, sensitive parameters of aging are identified and it is presented in this thesis.
Resumo:
We present a novel modified theory based upon Rayleigh scattering of ultrasound from composite nanoparticles with a liquid core and solid shell. We derive closed form solutions to the scattering cross-section and have applied this model to an ultrasound contrast agent consisting of a liquid-filled core (perfluorooctyl bromide, PFOB) encapsulated by a polymer shell (poly-caprolactone, PCL). Sensitivity analysis was performed to predict the dependence of the scattering cross-section upon material and dimensional parameters. A rapid increase in the scattering cross-section was achieved by increasing the compressibility of the core, validating the incorporation of high compressibility PFOB; the compressibility of the shell had little impact on the overall scattering cross-section although a more compressible shell is desirable. Changes in the density of the shell and the core result in predicted local minima in the scattering cross-section, approximately corresponding to the PFOB-PCL contrast agent considered; hence, incorporation of a lower shell density could potentially significantly improve the scattering cross-section. A 50% reduction in shell thickness relative to external radius increased the predicted scattering cross-section by 50%. Although it has often been considered that the shell has a negative effect on the echogeneity due to its low compressibility, we have shown that it can potentially play an important role in the echogeneity of the contrast agent. The challenge for the future is to identify suitable shell and core materials that meet the predicted characteristics in order to achieve optimal echogenity.
Resumo:
We investigated the effect of dielectric filling in a V groove on the propagation parameters of channel plasmon-polariton (CPP) modes. In particular, existence conditions and critical groove angles, mode localization, field structure, dispersion, and propagation distances of CPP modes are analyzed as functions of dielectric permittivity inside the groove. It is demonstrated that increasing dielectric permittivity in the groove results in a rapid increase of mode localization near the tip of the groove and increase of both the critical angles that determine a range of groove angles for which CPP modes can exist. Detailed analysis of the field structure has demonstrated that the maximum of the field in a CPP mode is typically reached at a small distance from the tip of the groove. The effect of rounded tip is also investigated.