29 resultados para FERROMAGNETIC SEMICONDUCTOR

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field-effect transistors (FETs) fabricated from undoped and Co2+-doped CdSe colloidal nanowires show typical n-channel transistor behaviour with gate effect. Exposed to microscope light, a 10 times current enhancement is observed in the doped nanowire-based devices due to the significant modification of the electronic structure of CdSe nanowires induced by Co2+-doping, which is revealed by theoretical calculations from spin-polarized plane-wave density functional theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the preparation and characterisation of nanometer-sized TiO2, CdO, and ZnO semiconductor particles trapped in zeolite NaY. Preparation of these particles was carried out via the traditional ion exchange method and subsequent calcination procedure. It was found that the smaller cations, i.e., Cd2+ and Zn2+ could be readily introduced into the SI′ and SII′ sites located in the sodalite cages, through ion exchange; while this is not the case for the larger Ti species, i.e., Ti monomer [TiO]2+ or dimer [Ti2O3]2+ which were predominantly dispersed on the external surface of zeolite NaY. The subsequent calcination procedure promoted these Ti species to migrate into the internal surface of the supercages. These semiconductor particles confined in NaY zeolite host exhibited a significant blue shift in the UV-VIS absorption spectra, in contrast to the respective bulk semiconductor materials, due to the quantum size effect (QSE). The particle sizes calculated from the UV-VIS optical absorption spectra using the effective mass approximation model are in good agreement with the atomic absorption data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a comprehensive study of the synthesis of nanomaterials. It explores the synthetic methods on the control of the size, shape and phase of semiconductor nanocrystals. A number of important conclusions, including the mechanism behind crystal growth and the structure-relationship, have been drawn through the experimental and theoretical investigation. The synthesized nanocrystals have been tested for applications in gas sensing, photocatalysis and solar cells, which exhibit considerable commercialization potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the reaction of semiconductor microrods of phase I copper 7,7,8,8-tetracyanoquinodimethane (CuTCNQ) with KAuBr4 in acetonitrile is reported. It was found that the reaction is redox in nature and proceeds via a galvanic replacement mechanism in which the surface of CuTCNQ is replaced with metallic gold nanoparticles. Given the slight solubility of CuTCNQ in acetonitrile, two competing reactions, namely CuTCNQ dissolution and the redox reaction with KAuBr4, were found to operate in parallel. An increase in the surface coverage of CuTCNQ microrods with gold nanoparticles occurred with an increased KAuBr4 concentration in acetonitrile, which also inhibited CuTCNQ dissolution. The reaction progress with time was monitored using UV−visible, FT-IR, and Raman spectroscopy as well as XRD and EDX analysis, and SEM imaging. The CuTCNQ/Au nanocomposites were investigated for their photocatalytic properties, wherein the destruction of Congo red, an organic dye, by simulated solar light was found dependent on the surface coverage of gold nanoparticles on the CuTCNQ microrods. This method of decorating CuTCNQ may open the possibility of modifying this and other metal-TCNQ charge transfer complexes with a host of other metals which may have significant applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today, the majority of semiconductor fabrication plants (fabs) conduct equipment preventive maintenance based on statistically-derived time- or wafer-count-based intervals. While these practices have had relative success in managing equipment availability and product yield, the cost, both in time and materials, remains high. Condition-based maintenance has been successfully adopted in several industries, where costs associated with equipment downtime range from potential loss of life to unacceptable affects to companies’ bottom lines. In this paper, we present a method for the monitoring of complex systems in the presence of multiple operating regimes. In addition, the new representation of degradation processes will be used to define an optimization procedure that facilitates concurrent maintenance and operational decision-making in a manufacturing system. This decision-making procedure metaheuristically maximizes a customizable cost function that reflects the benefits of production uptime, and the losses incurred due to deficient quality and downtime. The new degradation monitoring method is illustrated through the monitoring of a deposition tool operating over a prolonged period of time in a major fab, while the operational decision-making is demonstrated using simulated operation of a generic cluster tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on ab initio numerical simulations of the effect of Co and Cu dopings on the electronic structure and optical properties of ZnO, pursued to develop diluted magnetic semiconductors vitally needed for spintronic applications. The simulations are based upon the Perdew-Burke-Enzerh generalized gradient approximation on the density functional theory. It is revealed that the electrons with energies close to the Fermi level effectively transfer only between Cu and Co ions which substitute Zn atoms, and are located in the neighbor sites connected by an O ion. The simulation results are consistent with the experimental observations that addition of Cu helps achieve stable ferromagnetism of Co-doped ZnO. It is shown that simultaneous insertion of Co and Cu atoms leads to smaller energy band gap, redshift of the optical absorption edge, as well as significant changes in the reflectivity, dielectric function, refractive index, and electron energy loss function of ZnO as compared to the doping with either Co or Cu atoms. These highly unusual optical properties are explained in terms of the computed electronic structure and are promising for the development of the next-generation room-temperature ferromagnetic semiconductors for future spintronic devices on the existing semiconductor micromanufacturing platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of electron heating in the high-frequency surface polariton (SP) field on the dispersion properties of the SPs considered is investigated. High frequency SPs propagate at the interface between an n-type semiconductor with finite electron pressure, and a metal. The nonlinear dispersion relation for the SPs is derived and investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excitation of surface plasmon-polariton waves propagating across an external magnetic field (Voigt geometry) in a semiconductor-metal structure by means of the attenuated total reflection method is investigated. The phase matching conditions for the surface waves excitation in the Kretchmann configuration are derived and analyzed. The effect of different nonlinearities on the excitation of the surface waves is studied as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-linear self-interaction of the potential surface polaritons (SP) which is due to the free carriers dispersion law where nonparabolicity is studied. The SP propagate at the interface between n-type semiconductor and a metal. The self interaction of the SP is shown to be different in semiconductors with normal and inverse zone structures. The results of the SP field envelope evolution are given. The obtained nonlinear frequency shift has been compared with shifts which are due to another self-interaction mechanisms. This comparison shows that the nonlinear self-interaction mechanism, which is due to free carriers spectrum nonparabolicity, is especially significant in narrow-gap semiconductor materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersion properties and topography of the fields of azimuthal surface wave (ASW) in a coaxial semiconductor structure with metal walls, placed in an external magnetic field, are investigated analytically and numerically. It is shown that an ASW phase-shifting device can be realized in the proposed structure. The conditions are indicated for which wave perturbations exist having frequencies that depend on the direction of phase change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of a study on the influence of the nonparabolicity of the free carriers dispersion law on the propagation of surface polaritons (SPs) located near the interface between an n-type semiconductor and a metal arc reported. The semiconductor plasma is assumed to be warm and nonisothermal. The nonparabolicity of the electron dispersion law has two effects. The first one is associated with nonlinear self-interaction of the SPs. The nonlinear dispersion equation and the nonlinear Schrodinger equation for the amplitude of the SP envelope are obtained. The nonlinear evolution of the SP is studied on the base of the above mentioned equations. The second effect results in third harmonics generation. Analysis shows that these third harmonics may appear as a pure surface polariton, a pseudosurface polariton, or a superposition of a volume wave and a SP depending on the wave frequency, electron density and lattice dielectric constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical analysis of the bistability associated with the excitation of surface magnetoplasma waves (SWs) propagating across an external magnetic field at the semiconductor-metal interface by the attenuated total reflection (ATR) method is presented. The Kretschmann-Raether configuration of the ATR method is considered, i.e. a plane electromagnetic wave is incident onto a metal surface through a coupling prism. The third-order nonlinearity of the semiconductor medium is considered in the general form using the formalism of the third-order nonlinear susceptibilities and of the perturbation theory. The examples of the nonlinear mechanisms which influence the SW propagation are given. The analytical and numerical analyses show that the realization of bistable regimes of the SW excitation is possible. The SW amplitude values providing bistability in the structure are evaluated and are reasonably low to provide the experimental observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear self-interaction of the potential surface magnetoplasmons, propagating across the external magnetic field at the n-type semiconductor-metal interface is described in this manuscript. The studied nonlinearity is due to the free carriers dispersion law nonparabolicity and we show that it acts differently in semiconductor materials with normal and inverse band structures. The results of the nonlinear evolution of the surface magnetoplasmons are presented as well.