5 resultados para FASCICLES

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aim: To investigate the role of eccentric knee flexor strength, between-limb imbalance and biceps femoris long head (BFlh) fascicle length on the risk of a future hamstring strain injury (HSI). Methods: Elite soccer players (n=152) from eight different teams participated. Eccentric knee flexor strength during the Nordic hamstring exercise and BFlh fascicle length were assessed at the beginning of pre-season. The occurrences of a HSI following this were recorded by the team medical staff. Relative risk (RR) was determined for univariate data, and logistic regression was employed for multivariate data. Results: Twenty-seven new HSIs were reported. Eccentric knee flexor strength below 337N (RR = 4.4; 95% CI = 1.1 to 17.5) and BFlh fascicles shorter than 10.56cm (RR = 4.1; 95% CI=1.9 to 8.7) significantly increased the risk of a subsequent HSI. Multivariate logistic regression revealed significant effects when combinations of age, previous history of HSI, eccentric knee flexor strength and BFlh fascicle length were explored. From these analyses the likelihood of a future HSI in older athletes or those with a previous HSI history was reduced if high levels of eccentric knee flexor strength and longer BFlh fascicles were present. Conclusions: The presence of short BFlh fascicles and low levels of eccentric strength in elite soccer players increase the risk of a future HSI. The greater risk of a future HSI in older players or those with a previous HSI is reduced when they possess longer BFlh fascicles and high levels of eccentric strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Olfactory ensheathing cells (OECs) migrate with olfactory axons that extend from the nasal epithelium into the olfactory bulb. Unlike other glia, OECs are thought to migrate ahead of growing axons instead of following defined axonal paths. However it remains unknown how the presence of axons and OECs influences the growth and migration of each other during regeneration. We have developed a regeneration model in neonatal mice to examine whether (i) the presence of OECs ahead of olfactory axons affects axonal growth and (ii) the presence of olfactory axons alters the distribution of OECs. We performed unilateral bulbectomy to ablate olfactory axons followed by methimazole administration to further delay neuronal growth. In this model OECs filled the cavity left by the bulbectomy before new axons extended into the cavity. We found that delaying axon growth increased the rate at which OECs filled the cavity. The axons subsequently grew over a significantly larger region and formed more distinct fascicles and glomeruli in comparison with growth in animals that had undergone only bulbectomy. In vitro, we confirmed (i) that olfactory axon growth was more rapid when OECs were more widely distributed than the axons and (ii) that OECs migrated faster in the absence of axons. These results demonstrate that the distribution of OECs can be increased by repressing by growth of olfactory axons and that olfactory axon growth is significantly enhanced if a permissive OEC environment is present prior to axon growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rodent olfactory systems comprise the main olfactory system for the detection of odours and the accessory olfactory system which detects pheromones. In both systems, olfactory axon fascicles are ensheathed by olfactory glia, termed olfactory ensheathing cells (OECs), which are crucial for the growth and maintenance of the olfactory nerve. The growth-promoting and phagocytic characteristics of OECs make them potential candidates for neural repair therapies such as transplantation to repair the injured spinal cord. However, transplanting mixed populations of glia with unknown properties may lead to variations in outcomes for neural repair. As the phagocytic capacity of the accessory OECs has not yet been determined, we compared the phagocytic capacity of accessory and main OECs in vivo and in vitro. In normal healthy animals, the accessory OECs accumulated considerably less axon debris than main OECs in vivo. Analysis of freshly dissected OECs showed that accessory OECs contained 20% less fluorescent axon debris than main OECs. However, when assayed in vitro with exogenous axon debris added to the culture, the accessory OECs phagocytosed almost 20% more debris than main OECs. After surgical removal of one olfactory bulb which induced the degradation of main and accessory olfactory sensory axons, the accessory OECs responded by phagocytosing the axon debris. We conclude that while accessory OECs have the capacity to phagocytose axon debris, there are distinct differences in their phagocytic capacity compared to main OECs. These distinct differences may be of importance when preparing OECs for neural transplant repair therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To determine if limbs with a history of anterior cruciate ligament (ACL) injury reconstructed from the semitendinosus (ST) display different biceps femoris long head (BFlh) architecture and eccentric strength, assessed during the Nordic hamstring exercise, compared to the contralateral uninjured limb. Methods The architectural characteristics of the BFlh were assessed at rest and at 25% of a maximal voluntary isometric contraction (MVIC) in the control (n=52) and previous ACL injury group (n=15) using two-dimensional ultrasonography. Eccentric knee-flexor strength was assessed during the Nordic hamstring exercise. Results Fascicle length was shorter (p=0.001; d range: 0.90 to 1.31) and pennation angle (p range: 0.001 to 0.006: d range: 0.87 to 0.93) was greater in the BFlh of the ACL injured limb when compared to the contralateral uninjured limb at rest and during 25% of MVIC. Eccentric strength was significantly lower in the ACL injured limb than the contralateral uninjured limb (-13.7%; -42.9N; 95% CI = -78.7 to -7.2; p=0.021; d=0.51). Fascicle length, MVIC and eccentric strength were not different between the left and right limb in the control group. Conclusions Limbs with a history of ACL injury reconstructed from the ST have shorter fascicles and greater pennation angles in the BFlh compared to the contralateral uninjured side. Eccentric strength during the Nordic hamstring exercise of the ACL injured limb is significantly lower than the contralateral side. These findings have implications for ACL rehabilitation and hamstring injury prevention practices which should consider altered architectural characteristics.