121 resultados para Estimation of gaze direction

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. The purpose of the study was to investigate the changes in axial length occurring with shifts in gaze direction. Methods. Axial length measurements were obtained from the left eye of 30 young adults (10 emmetropes, 10 low myopes, and 10 moderate myopes) through a rotating prism with 15° deviation, along the foveal axis, using a noncontact optical biometer in each of the nine different cardinal directions of gaze over 5 minutes. The subject's fellow eye fixated on an external distance (6 m) target to control accommodation, also with 15° deviation. Axial length measurements were also performed in 15° and 25° downward gaze with the biometer inclined on a tilting table, allowing gaze shifts to be achieved with either full head turn but no eye turn, or full eye turn with no head turn. Results. There was a significant influence of gaze angle and time on axial length (both P < 0.001), with the greatest axial elongation (+18 ± 8 μm) occurring with inferonasal gaze (P < 0.001) and a slight decrease in axial length in superior gaze (−12 ± 17 μm) compared with primary gaze (P < 0.001). In downward gaze, a significant axial elongation occurred when eye turn was used (P < 0.001), but not when head turn was used to shift gaze (P > 0.05). Conclusions. The angle of gaze has a small but significant short-term effect on axial length, with greatest elongation occurring in inferonasal gaze. The elongation of the eye appears to be due to the influence of the extraocular muscles, in particular the oblique muscles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. Experienced drivers have better hazard perception ability compared to inexperienced drivers. Eye gaze patterns have been found to be an indicator of the driver's competency level. The aim of this paper is to develop an in-vehicle system which correlates information about the driver's gaze and vehicle dynamics, which is then used to assist driver trainers in assessing driving competency. This system allows visualization of the complete driving manoeuvre data on interactive maps. It uses an eye tracker and perspective projection algorithms to compute the depth of gaze and plots it on Google maps. This interactive map also features the trajectory of the vehicle and turn indicator usage. This system allows efficient and user friendly analysis of the driving task. It can be used by driver trainers and trainees to understand objectively the risks encountered during driving manoeuvres. This paper presents a prototype that plots the driver's eye gaze depth and direction on an interactive map along with the vehicle dynamics information. This prototype will be used in future to study the difference in gaze patterns in novice and experienced drivers prior to a certain manoeuvre.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: