23 resultados para Estimación Probit
em Queensland University of Technology - ePrints Archive
Comparison of Regime Switching, Probit and Logit Models in Dating and Forecasting US Business Cycles
Resumo:
Navigational collisions are a major safety concern in many seaports. Despite the recent advances in port navigational safety research, little is known about harbor pilot’s perception of collision risks in anchorages. This study attempts to model such risks by employing a hierarchical ordered probit model, which is calibrated by using data collected through a risk perception survey conducted on Singapore port pilots. The hierarchical model is found to be useful to account for correlations in risks perceived by individual pilots. Results show higher perceived risks in anchorages attached to intersection, local and international fairway; becoming more critical at night. Lesser risks are perceived in anchorages featuring shoreline in boundary, higher water depth, lower density of stationary ships, cardinal marks and isolated danger marks. Pilotage experience shows a negative effect on perceived risks. This study indicates that hierarchical modeling would be useful for treating correlations in navigational safety data.
Resumo:
A rule of thumb is suggested for comparing multinomial logit coefficients with multinomial probit coefficients in the special case where the normal errors are distributed N(0,1). The rule is a generalization of the '1.6' rule for comparing logit and probit coefficients. © 1989.
Resumo:
The growing demand for electricity in New Zealand has led to the construction of new hydro-dams or power stations that have had environmental, social and cultural effects. These effects may drive increases in electricity prices, as such prices reflect the cost of running existing power stations as well as building new ones. This study uses Canterbury and Central Otago as case studies because both regions face similar issues in building new hydro-dams and ever-increasing electricity prices that will eventually prompt households to buy power at higher prices. One way for households to respond to these price changes is to generate their own electricity through microgeneration technologies (MGT). The objective of this study is to investigate public perception and preferences regarding MGT and to analyze the factors that influence people's decision to adopt such new technologies in New Zealand. The study uses a multivariate probit approach to examine households' willingness to adopt any one MGT system or a combination of the MGT systems. Our findings provide valuable information for policy makers and marketers who wish to promote effective microgeneration technologies.
Resumo:
Harmful Algal Blooms (HABs) are a worldwide problem that have been increasing in frequency and extent over the past several decades. HABs severely damage aquatic ecosystems by destroying benthic habitat, reducing invertebrate and fish populations and affecting larger species such as dugong that rely on seagrasses for food. Few statistical models for predicting HAB occurrences have been developed, and in common with most predictive models in ecology, those that have been developed do not fully account for uncertainties in parameters and model structure. This makes management decisions based on these predictions more risky than might be supposed. We used a probit time series model and Bayesian Model Averaging (BMA) to predict occurrences of blooms of Lyngbya majuscula, a toxic cyanophyte, in Deception Bay, Queensland, Australia. We found a suite of useful predictors for HAB occurrence, with Temperature figuring prominently in models with the majority of posterior support, and a model consisting of the single covariate average monthly minimum temperature showed by far the greatest posterior support. A comparison of alternative model averaging strategies was made with one strategy using the full posterior distribution and a simpler approach that utilised the majority of the posterior distribution for predictions but with vastly fewer models. Both BMA approaches showed excellent predictive performance with little difference in their predictive capacity. Applications of BMA are still rare in ecology, particularly in management settings. This study demonstrates the power of BMA as an important management tool that is capable of high predictive performance while fully accounting for both parameter and model uncertainty.
Resumo:
A growing literature seeks to explain differences in individuals' self-reported satisfaction with their jobs. The evidence so far has mainly been based on cross-sectional data and when panel data have been used, individual unobserved heterogeneity has been modelled as an ordered probit model with random effects. This article makes use of longitudinal data for Denmark, taken from the waves 1995-1999 of the European Community Household Panel, and estimates fixed effects ordered logit models using the estimation methods proposed by Ferrer-i-Carbonel and Frijters (2004) and Das and van Soest (1999). For comparison and testing purposes a random effects ordered probit is also estimated. Estimations are carried out separately on the samples of men and women for individuals' overall satisfaction with the jobs they hold. We find that using the fixed effects approach (that clearly rejects the random effects specification), considerably reduces the number of key explanatory variables. The impact of central economic factors is the same as in previous studies, though. Moreover, the determinants of job satisfaction differ considerably between the genders, in particular once individual fixed effects are allowed for.
Resumo:
An increase in the likelihood of navigational collisions in port waters has put focus on the collision avoidance process in port traffic safety. The most widely used on-board collision avoidance system is the automatic radar plotting aid which is a passive warning system that triggers an alert based on the pilot’s pre-defined indicators of distance and time proximities at the closest point of approaches in encounters with nearby vessels. To better help pilot in decision making in close quarter situations, collision risk should be considered as a continuous monotonic function of the proximities and risk perception should be considered probabilistically. This paper derives an ordered probit regression model to study perceived collision risks. To illustrate the procedure, the risks perceived by Singapore port pilots were obtained to calibrate the regression model. The results demonstrate that a framework based on the probabilistic risk assessment model can be used to give a better understanding of collision risk and to define a more appropriate level of evasive actions.
Resumo:
Navigational collisions are one of the major safety concerns in many seaports. Despite the extent of recent works done on port navigational safety research, little is known about harbor pilot’s perception of collision risks in port fairways. This paper uses a hierarchical ordered probit model to investigate associations between perceived risks and the geometric and traffic characteristics of fairways and the pilot attributes. Perceived risk data, collected through a risk perception survey conducted among the Singapore port pilots, are used to calibrate the model. Intra-class correlation coefficient justifies use of the hierarchical model in comparison with an ordinary model. Results show higher perceived risks in fairways attached to anchorages, and in those featuring sharper bends and higher traffic operating speeds. Lesser risks are perceived in fairways attached to shoreline and confined waters, and in those with one-way traffic, traffic separation scheme, cardinal marks and isolated danger marks. Risk is also found to be perceived higher in night.
Resumo:
Despite a considerable amount of research on traffic injury severities, relatively little is known about the factors influencing traffic injury severity in developing countries, and in particular in Bangladesh. Road traffic crashes are a common headline in daily newspapers of Bangladesh. It has also recorded one of the highest road fatality rates in the world. This research identifies significant factors contributing to traffic injury severity in Dhaka – a mega city and capital of Bangladesh. Road traffic crash data of 5 years from 2007 to 2011 were collected from the Dhaka Metropolitan Police (DMP), which included about 2714 traffic crashes. The severity level of these crashes was documented in a 4-point ordinal scale: no injury (property damage), minor injury, severe injury, and death. An ordered Probit regression model has been estimated to identify factors contributing to injury severities. Results show that night time influence is associated with a higher level injury severity as is for individuals involved in single vehicle crashes. Crashes on highway sections within the city are found to be more injurious than crashes along the arterial and feeder roads. There is a lower likelihood of injury severity, however, if the road sections are monitored and enforced by the traffic police. The likelihood of injuries is lower on two-way traffic arrangements than one-way, and at four-legged intersections and roundabouts compare to road segments. The findings are compared with those from developed countries and the implications of this research are discussed in terms of policy settings for developing countries.
Resumo:
This paper proposes a framework to analyse performance on multiple choice questions with the focus on linguistic factors. Item Response Theory (IRT) is deployed to estimate ability and question difficulty levels. A logistic regression model is used to detect Differential Item Functioning questions. Probit models testify relationships between performance and linguistic factors controlling the effects of question construction and students’ background. Empirical results have important implications. The lexical density of stems affects performance. The use of non-Economics specialised vocabulary has differing impacts on the performance of students with different language backgrounds. The IRT-based ability and difficulty help explain performance variations.
Resumo:
Immigration has played an important role in the historical development of Australia. Thus, it is no surprise that a large body of empirical work has developed, which focuses upon how migrants fare in the land of opportunity. Much of the literature is comparatively recent, i.e. the last ten years or so, encouraged by the advent of public availability of Australian crosssection micro data. Several different aspects of migrant welfare have been addressed, with major emphasis being placed upon earnings and unemployment experience. For recent examples see Haig (1980), Stromback (1984), Chiswick and Miller (1985), Tran-Nam and Nevile (1988) and Beggs and Chapman (1988). The present paper contributes to the literature by providing additional empirical evidence on the native/migrant earnings differential. The data utilised are from the rather neglected Australian Bureau of Statistics, ABS Special Supplementary Survey No.4. 1982, otherwise known as the Family Survey. The paper also examines the importance of distinguishing between the wage and salary sector and the self-employment sector when discussing native/migrant differentials. Separate earnings equations for the two labour market groups are estimated and the native/migrant earnings differential is broken down by employment status. This is a novel application in the Australian context and provides some insight into the earnings of the selfemployed, a group that despite its size (around 20 per cent of the labour force) is frequently ignored by economic research. Most previous empirical research fails to examine the effect of employment status on earnings. Stromback (1984) includes a dummy variable representing self-employment status in an earnings equation estimated over a pooled sample of paid and self-employed workers. The variable is found to be highly significant, which leads Stromback to question the efficacy of including the self-employed in the estimation sample. The suggestion is that part of self-employed earnings represent a return to non-human capital investment, i.e. investments in machinery, buildings etc, the structural determinants of earnings differ significantly from those for paid employees. Tran-Nam and Nevile (1988) deal with differences between paid employees and the selfemployed by deleting the latter from their sample. However, deleting the self-employed from the estimation sample may lead to bias in the OLS estimation method (see Heckman 1979). The desirable properties of OLS are dependent upon estimation on a random sample. Thus, the 'Ran-Nam and Nevile results are likely to suffer from bias unless individuals are randomly allocated between self-employment and paid employment. The current analysis extends Tran-Nam and Nevile (1988) by explicitly treating the choice of paid employment versus self-employment as being endogenously determined. This allows an explicit test for the appropriateness of deleting self-employed workers from the sample. Earnings equations that are corrected for sample selection are estimated for both natives and migrants in the paid employee sector. The Heckman (1979) two-step estimator is employed. The paper is divided into five major sections. The next section presents the econometric model incorporating the specification of the earnings generating process together with an explicit model determining an individual's employment status. In Section 111 the data are described. Section IV draws together the main econometric results of the paper. First, the probit estimates of the labour market status equation are documented. This is followed by presentation and discussion of the Heckman two-stage estimates of the earnings specification for both native and migrant Australians. Separate earnings equations are estimated for paid employees and the self-employed. Section V documents estimates of the nativelmigrant earnings differential for both categories of employees. To aid comparison with earlier work, the Oaxaca decomposition of the earnings differential for paid-employees is carried out for both the simple OLS regression results as well as the parameter estimates corrected for sample selection effects. These differentials are interpreted and compared with previous Australian findings. A short section concludes the paper.
Resumo:
The increased popularity of mopeds and motor scooters in Australia and elsewhere in the last decade has contributed substantially to the greater use of powered two-wheelers (PTWs) as a whole. As the exposure of mopeds and scooters has increased, so too has the number of reported crashes involving those PTW types, but there is currently little research comparing the safety of mopeds and, particularly, larger scooters with motorcycles. This study compared the crash risk and crash severity of motorcycles, mopeds and larger scooters in Queensland, Australia. Comprehensive data cleansing was undertaken to separate motorcycles, mopeds and larger scooters in police-reported crash data covering the five years to 30 June 2008. The crash rates of motorcycles (including larger scooters) and mopeds in terms of registered vehicles were similar over this period, although the moped crash rate showed a stronger downward trend. However, the crash rates in terms of distance travelled were nearly four times higher for mopeds than for motorcycles (including larger scooters). More comprehensive distance travelled data is needed to confirm these findings. The overall severity of moped and scooter crashes was significantly lower than motorcycle crashes but an ordered probit regression model showed that crash severity outcomes related to differences in crash characteristics and circumstances, rather than differences between PTW types per se. Greater motorcycle crash severity was associated with higher (>80 km/h) speed zones, horizontal curves, weekend, single vehicle and nighttime crashes. Moped crashes were more severe at night and in speed zones of 90 km/h or more. Larger scooter crashes were more severe in 70 km/h zones (than 60 km/h zones) but not in higher speed zones, and less severe on weekends than on weekdays. The findings can be used to inform potential crash and injury countermeasures tailored to users of different PTW types.
Resumo:
The existing literature shows driving speed significantly affects levels of safety, emissions, and stress in driving. In addition, drivers who feel tense when driving have been found to drive more slowly than others. These findings were mostly obtained from crash data analyses or field studies, and less is known regarding driver perceptions of the extent to which reducing their driving speed would improve road safety, reduce their car’s emissions, and reduce stress and road rage. This paper uses ordered probit regression models to analyse responses from 3538 Queensland drivers who completed an online RACQ survey. Drivers most strongly agreed that reducing their driving speed would improve road safety, less strongly agreed that reducing their driving speed would reduce their car’s emissions and least strongly agreed that reducing their driving speed would reduce stress and road rage. Younger drivers less strongly agreed that these benefits would occur than older drivers. Drivers of automatic cars and those who are bicycle commuters agreed more to these benefits than other drivers. Female drivers agreed more strongly than males on improving safety and reducing stress and road rage. Type of fuel used, engine size, driving experience, and distance driven per week were also found to be associated with driver perceptions, although these were not found to be significant in all of the regression models. The findings from this study may help in developing targeted training or educational measures to improve drivers’ willingness to reduce their driving speed.
Resumo:
Singapore is a highly urbanized city-state country where walking is an important mode of travel. Pedestrians form about 25% of road fatalities every year, making them one of the most vulnerable road user groups in Singapore. Engineering measures like provision of overhead pedestrian crossings and raised zebra crossings tend to address pedestrian safety in general, but there may be occasions where pedestrians are particularly vulnerable so that targeted interventions are more appropriate. The objective of this study is to identify factors and situations that affect the injury severity of pedestrians involved in traffic crashes. Six years of crash data from 2003 to 2008 containing around four thousands pedestrian crashes at roadway segments were analyzed. Injury severity of pedestrians—recorded as slight injury, major injury and fatal—were modeled as a function of roadway characteristics, traffic features, environmental factors and pedestrian demographics by an ordered probit model. Results suggest that the injury severity of pedestrians involved in crashes during night time is higher indicating that pedestrian visibility during night is a key issue in pedestrian safety. The likelihood of fatal or serious injuries is higher for crashes on roads with high speed limit, center and median lane of multi-lane roads, school zones, roads with two-way divided traffic type, and when pedestrians cross the roads. Elderly pedestrians appear to be involved in fatal and serious injury crashes more when they attempt to cross the road without using nearby crossing facilities. Specific countermeasures are recommended based on the findings of this study.