179 resultados para Epipolar geometry

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationship between multiple cameras viewing the same scene may be discovered automatically by finding corresponding points in the two views and then solving for the camera geometry. In camera networks with sparsely placed cameras, low resolution cameras or in scenes with few distinguishable features it may be difficult to find a sufficient number of reliable correspondences from which to compute geometry. This paper presents a method for extracting a larger number of correspondences from an initial set of putative correspondences without any knowledge of the scene or camera geometry. The method may be used to increase the number of correspondences and make geometry computations possible in cases where existing methods have produced insufficient correspondences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Camera calibration information is required in order for multiple camera networks to deliver more than the sum of many single camera systems. Methods exist for manually calibrating cameras with high accuracy. Manually calibrating networks with many cameras is, however, time consuming, expensive and impractical for networks that undergo frequent change. For this reason, automatic calibration techniques have been vigorously researched in recent years. Fully automatic calibration methods depend on the ability to automatically find point correspondences between overlapping views. In typical camera networks, cameras are placed far apart to maximise coverage. This is referred to as a wide base-line scenario. Finding sufficient correspondences for camera calibration in wide base-line scenarios presents a significant challenge. This thesis focuses on developing more effective and efficient techniques for finding correspondences in uncalibrated, wide baseline, multiple-camera scenarios. The project consists of two major areas of work. The first is the development of more effective and efficient view covariant local feature extractors. The second area involves finding methods to extract scene information using the information contained in a limited set of matched affine features. Several novel affine adaptation techniques for salient features have been developed. A method is presented for efficiently computing the discrete scale space primal sketch of local image features. A scale selection method was implemented that makes use of the primal sketch. The primal sketch-based scale selection method has several advantages over the existing methods. It allows greater freedom in how the scale space is sampled, enables more accurate scale selection, is more effective at combining different functions for spatial position and scale selection, and leads to greater computational efficiency. Existing affine adaptation methods make use of the second moment matrix to estimate the local affine shape of local image features. In this thesis, it is shown that the Hessian matrix can be used in a similar way to estimate local feature shape. The Hessian matrix is effective for estimating the shape of blob-like structures, but is less effective for corner structures. It is simpler to compute than the second moment matrix, leading to a significant reduction in computational cost. A wide baseline dense correspondence extraction system, called WiDense, is presented in this thesis. It allows the extraction of large numbers of additional accurate correspondences, given only a few initial putative correspondences. It consists of the following algorithms: An affine region alignment algorithm that ensures accurate alignment between matched features; A method for extracting more matches in the vicinity of a matched pair of affine features, using the alignment information contained in the match; An algorithm for extracting large numbers of highly accurate point correspondences from an aligned pair of feature regions. Experiments show that the correspondences generated by the WiDense system improves the success rate of computing the epipolar geometry of very widely separated views. This new method is successful in many cases where the features produced by the best wide baseline matching algorithms are insufficient for computing the scene geometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Robust, affine covariant, feature extractors provide a means to extract correspondences between images captured by widely separated cameras. Advances in wide baseline correspondence extraction require looking beyond the robust feature extraction and matching approach. This study examines new techniques of extracting correspondences that take advantage of information contained in affine feature matches. Methods of improving the accuracy of a set of putative matches, eliminating incorrect matches and extracting large numbers of additional correspondences are explored. It is assumed that knowledge of the camera geometry is not available and not immediately recoverable. The new techniques are evaluated by means of an epipolar geometry estimation task. It is shown that these methods enable the computation of camera geometry in many cases where existing feature extractors cannot produce sufficient numbers of accurate correspondences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Achieving a robust, accurately scaled pose estimate in long-range stereo presents significant challenges. For large scene depths, triangulation from a single stereo pair is inadequate and noisy. Additionally, vibration and flexible rigs in airborne applications mean accurate calibrations are often compromised. This paper presents a technique for accurately initializing a long-range stereo VO algorithm at large scene depth, with accurate scale, without explicitly computing structure from rigidly fixed camera pairs. By performing a monocular pose estimate over a window of frames from a single camera, followed by adding the secondary camera frames in a modified bundle adjustment, an accurate, metrically scaled pose estimate can be found. To achieve this the scale of the stereo pair is included in the optimization as an additional parameter. Results are presented both on simulated and field gathered data from a fixed-wing UAV flying at significant altitude, where the epipolar geometry is inaccurate due to structural deformation and triangulation from a single pair is insufficient. Comparisons are made with more conventional VO techniques where the scale is not explicitly optimized, and demonstrated over repeated trials to indicate robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a deductive theoretical enquiry into the flow of effects from the geometry of price bubbles/busts, to price indices, to pricing behaviours of sellers and buyers, and back to price bubbles/busts. The intent of the analysis is to suggest analytical approaches to identify the presence, maturity, and/or sustainability of a price bubble. We present a pricing model to emulate market behaviour, including numeric examples and charts of the interaction of supply and demand. The model extends into dynamic market solutions myopic (single- and multi-period) backward looking rational expectations to demonstrate how buyers and sellers interact to affect supply and demand and to show how capital gain expectations can be a destabilising influence – i.e. the lagged effects of past price gains can drive the market price away from long-run market-worth. Investing based on the outputs of past price-based valuation models appear to be more of a game-of-chance than a sound investment strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is a new hollow flange section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming technologies. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It has found increasing popularity in residential, industrial and commercial buildings as flexural members. The LSB is considerably lighter than traditional hot-rolled steel beams and provides both structural and construction efficiencies. However, the LSB flexural members are subjected to a relatively new lateral distortional buckling mode, which reduces their member moment capacities. Unlike the commonly observed lateral torsional buckling of steel beams, the lateral distortional buckling of LSBs is characterised by simultaneous lateral defection, twist and cross sectional change due to web distortion. The current design rules in AS/NZS 4600 (SA, 2005) for flexural members subject to lateral distortional buckling were found to be conservative by about 8% in the inelastic buckling region. Therefore, a new design rule was developed for LSBs subject to lateral distortional buckling based on finite element analyses of LSBs. The effect of section geometry was then considered and several geometrical parameters were used to develop an advanced set of design rules. This paper presents the details of the finite element analyses and the design curve development for hollow flange sections subject to lateral distortional buckling.