375 resultados para Enzyme applications

em Queensland University of Technology - ePrints Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fungi are eukaryotic organisms and considered to be less adaptable to extreme environments when compared to bacteria. While there are no thermophilic microfungi in a strict sense, some fungi have adapted to life in the cold. Cold-active microfungi have been isolated from the Antarctic and their enzyme activities explored with a view to finding new candidates for industrial use. On another front, environmental pollution by petroleum products in the Antarctic has led to a search for, and the subsequent discovery of, fungal isolates capable of degrading hydrocarbons. The work has paved the way to developing a bioremedial approach to containing this type of contamination in cold climates. Here we discuss our efforts to map the capability of Antarctic microfungi to degrade oil and also introduce a novel cold-active fungal lipase enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a forward study of alumina nanofiber material in developing its applications biology field. It demonstrates that by applying proper modification strategy, alumina nanofiber is a promising material in protein purification and enzyme immobilization. The hydrophobic modification has dramatically improved the rejecting of protein molecular in purification system. On the other hand, utilisation of cross-linking agent firmly combined alumina nanofiber and target enzyme for immobilisation purpose. This step of progress could lead to inspiration of alumina nanofiber’s application in various area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmin is the primary enzyme responsible for dissolution of fibrin in the circulatory system. Plasminogen, the zymogen of plasmin is expressed ubiquitously in the human body [1], with the predominant source being the liver [2, 3]. Plasminogen is produced as an 810 amino acid protein with a 19 amino acid leader peptide, which is cleaved during secretion to produce the mature 791 amino acid one-chain zymogen. This is converted to plasmin by cleavage of the Arg561 - Val562 scissile bond [4], resulting in an active protease consisting of two disulfide linked chains. The amino-terminal heavy chain (residues Glu1-Arg561) is comprised of a plasminogen/apple/nematode (PAN) domain [5] and five kringle domains of approximately equal size [6] while the light chain (residues Val562-Asn791) contains a serine protease domain homologous to trypsin with a catalytic triad comprising His603, Asp646 and Ser741 [7]. Both plasmin and plasminogen occur in two forms, full length and a Lys77-Lys78 activated variant produced through self catalysis (Figure 1). The former exists in a tight conformation through binding of Lys50 and/or Lys62 to kringle domain 5 [8, 9] while Lys78-plasminogen assumes a more relaxed conformation rendering it more susceptible to plasmin conversion [10, 11].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5α-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper identifies a number of critical infrastructure applications that are reliant on location services from cooperative location technologies such as GPS and GSM. We show that these location technologies can be represented in a general location model, such that the model components can be used for vulnerability analysis. We perform a vulnerability analysis on these components of GSM and GPS location systems as well as a number of augmentations to these systems.