589 resultados para Environmental niche modeling
em Queensland University of Technology - ePrints Archive
Resumo:
Japanese encephalitis (JE) is the most common cause of viral encephalitis and an important public health concern in the Asia-Pacific region, particularly in China where 50% of global cases are notified. To explore the association between environmental factors and human JE cases and identify the high risk areas for JE transmission in China, we used annual notified data on JE cases at the center of administrative township and environmental variables with a pixel resolution of 1 km×1 km from 2005 to 2011 to construct models using ecological niche modeling (ENM) approaches based on maximum entropy. These models were then validated by overlaying reported human JE case localities from 2006 to 2012 onto each prediction map. ENMs had good discriminatory ability with the area under the curve (AUC) of the receiver operating curve (ROC) of 0.82-0.91, and low extrinsic omission rate of 5.44-7.42%. Resulting maps showed JE being presented extensively throughout southwestern and central China, with local spatial variations in probability influenced by minimum temperatures, human population density, mean temperatures, and elevation, with contribution of 17.94%-38.37%, 15.47%-21.82%, 3.86%-21.22%, and 12.05%-16.02%, respectively. Approximately 60% of JE cases occurred in predicted high risk areas, which covered less than 6% of areas in mainland China. Our findings will help inform optimal geographical allocation of the limited resources available for JE prevention and control in China, find hidden high-risk areas, and increase the effectiveness of public health interventions against JE transmission.
Resumo:
Mycobacterium asiaticum was first reported as a cause of human disease in 1982, with only a few cases in the literature to date. This study aims to review the clinical significance of M. asiaticum isolates in Queensland, Australia. A retrospective review (1989 to 2008) of patients with M. asiaticum isolates was conducted. Data were collected through the Queensland TB Control Centre database. Disease was defined in accordance with the American Thoracic Society criteria. Twenty-four patients (13 female) had a positive culture of M. asiaticum, many residing around the Tropic of Capricorn. M. asiaticum was responsible for pulmonary disease (n = 2), childhood lymphadenitis (n = 1), olecranon bursitis (n = 1), 6 cases of possible pulmonary disease, and 2 possible wound infections. Chronic lung disease was a risk factor for pulmonary infection, and wounds/lacerations were a risk factor for extrapulmonary disease. Extrapulmonary disease responded to local measures. Pulmonary disease responded to ethambutol-isoniazid-rifampin plus pyrazinamide for the first 2 months in one patient, and amikacin-azithromycin-minocycline in another patient. While M. asiaticum is rare in Queensland, there appears to be an environmental niche. Although often a colonizer, it can be a cause of pulmonary and extrapulmonary disease. Treatment of pulmonary disease remains challenging. Extrapulmonary disease does not mandate specific nontuberculous mycobacterium (NTM) treatment.
Resumo:
Most salad vegetables are eaten fresh by consumers. However, raw vegetables may pose a risk of transmitting opportunistic bacteria to immunocompromised people, including cystic fibrosis (CF) patients. In particular, CF patients are vulnerable to chronic Pseudomonas aeruginosa lung infections and this organism is the primary cause of morbidity and mortality in this group. Clonal variants of P. aeruginosa have been identified as emerging threats to people afflicted with CF; however it has not yet been proven from where these clones originate or how they are transmitted. Due to the organisms‟ aquatic environmental niche, it was hypothesised that vegetables may be a source of these clones. To test this hypothesis, lettuce, tomatoes, mushrooms and bean sprout packages (n = 150) were analysed from a green grocer, supermarket and farmers‟ market within the Brisbane region, availability permitting. The internal and external surfaces of the vegetables were separately analysed for the presence of clonal strains of P. aeruginosa using washings and homogenisation techniques, respectively. This separation was in an attempt to establish which surface was contaminated, so that recommendations could be made to decrease or eliminate P. aeruginosa from these foods prior to consumption. Soil and water samples (n = 17) from local farms were also analysed for the presence of P. aeruginosa. Presumptive identification of isolates recovered from these environmental samples was made based on growth on Cetrimide agar at 42°C, presence of the cytochrome-oxidase enzyme and inability to ferment lactose. P. aeruginosa duplex real-time polymerase chain reaction assay (PAduplex) was performed on all bacterial isolates presumptively identified as P. aeruginosa. Enterobacterial repetitive intergenic consensus strain typing PCR (ERIC-PCR) was subsequently performed on confirmed bacterial isolates. Although 72 P. aeruginosa were isolated, none of these proved to be clonal strains. The significance of these findings is that vegetables may pose a risk of transmitting sporadic strains of P. aeruginosa to people afflicted with CF and possibly, other immunocompromised people.
Resumo:
Mycobacterium kansasii is a pulmonary pathogen that has been grown readily from municipal water, but rarely isolated from natural waters. A definitive link between water exposure and disease has not been demonstrated and the environmental niche for this organism is poorly understood. Strain typing of clinical isolates has revealed seven subtypes with Type 1 being highly clonal and responsible for most infections worldwide. The prevalence of other subtypes varies geographically. In this study 49 water isolates are compared with 72 patient isolates from the same geographical area (Brisbane, Australia), using automated repetitive unit PCR (Diversilab) and ITS RFLP. The clonality of the dominant clinical strain type is again demonstrated but with rep-PCR, strain variation within this group is evident comparable with other reported methods. There is significant heterogeneity of water isolates and very few are similar or related to the clinical isolates. This suggests that if water or aerosol transmission is the mode of infection, then point source contamination likely occurs from an alternative environmental source.
Resumo:
The quality of species distribution models (SDMs) relies to a large degree on the quality of the input data, from bioclimatic indices to environmental and habitat descriptors (Austin, 2002). Recent reviews of SDM techniques, have sought to optimize predictive performance e.g. Elith et al., 2006. In general SDMs employ one of three approaches to variable selection. The simplest approach relies on the expert to select the variables, as in environmental niche models Nix, 1986 or a generalized linear model without variable selection (Miller and Franklin, 2002). A second approach explicitly incorporates variable selection into model fitting, which allows examination of particular combinations of variables. Examples include generalized linear or additive models with variable selection (Hastie et al. 2002); or classification trees with complexity or model based pruning (Breiman et al., 1984, Zeileis, 2008). A third approach uses model averaging, to summarize the overall contribution of a variable, without considering particular combinations. Examples include neural networks, boosted or bagged regression trees and Maximum Entropy as compared in Elith et al. 2006. Typically, users of SDMs will either consider a small number of variable sets, via the first approach, or else supply all of the candidate variables (often numbering more than a hundred) to the second or third approaches. Bayesian SDMs exist, with several methods for eliciting and encoding priors on model parameters (see review in Low Choy et al. 2010). However few methods have been published for informative variable selection; one example is Bayesian trees (O’Leary 2008). Here we report an elicitation protocol that helps makes explicit a priori expert judgements on the quality of candidate variables. This protocol can be flexibly applied to any of the three approaches to variable selection, described above, Bayesian or otherwise. We demonstrate how this information can be obtained then used to guide variable selection in classical or machine learning SDMs, or to define priors within Bayesian SDMs.
Resumo:
It is important to examine the nature of the relationships between roadway, environmental, and traffic factors and motor vehicle crashes, with the aim to improve the collective understanding of causal mechanisms involved in crashes and to better predict their occurrence. Statistical models of motor vehicle crashes are one path of inquiry often used to gain these initial insights. Recent efforts have focused on the estimation of negative binomial and Poisson regression models (and related deviants) due to their relatively good fit to crash data. Of course analysts constantly seek methods that offer greater consistency with the data generating mechanism (motor vehicle crashes in this case), provide better statistical fit, and provide insight into data structure that was previously unavailable. One such opportunity exists with some types of crash data, in particular crash-level data that are collected across roadway segments, intersections, etc. It is argued in this paper that some crash data possess hierarchical structure that has not routinely been exploited. This paper describes the application of binomial multilevel models of crash types using 548 motor vehicle crashes collected from 91 two-lane rural intersections in the state of Georgia. Crash prediction models are estimated for angle, rear-end, and sideswipe (both same direction and opposite direction) crashes. The contributions of the paper are the realization of hierarchical data structure and the application of a theoretically appealing and suitable analysis approach for multilevel data, yielding insights into intersection-related crashes by crash type.
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.
Resumo:
Background: Initiatives to promote utility cycling in countries like Australia and the US, which have low rates of utility cycling, may be more effective if they first target recreational cyclists. This study aimed to describe patterns of utility cycling and examine its correlates, among cyclists in Queensland, Australia. Methods: An online survey was administered to adult members of a state-based cycling community and advocacy group (n=1813). The survey asked about demographic characteristics and cycling behavior, motivators and constraints. Utility cycling patterns were described, and logistic regression modeling was used to examine associations between utility cycling and other variables. Results: Forty-seven percent of respondents reported utility cycling: most did so to commute (86%). Most journeys (83%) were >5 km. Being male, younger, employed full-time, or university-educated increased the likelihood of utility cycling (p<0.05). Perceiving cycling to be a cheap or a convenient form of transport were associated with utility cycling (p<0.05). Conclusions: The moderate rate of utility cycling among recreational cyclists highlights a potential to promote utility cycling among this group. To increase utility cycling, strategies should target female and older recreational cyclists and focus on making cycling a cheap and convenient mode of transport.
Resumo:
Agents make up an important part of game worlds, ranging from the characters and monsters that live in the world to the armies the player controls. Despite their importance, agents in current games rarely display an awareness of their environment or react appropriately, which severely detracts from the believability of the game. Most games use agents that have a basic awareness of the player and other agents, but are still unaware of important game events or environmental conditions. This article describes an agent design that combines cellular automata for environmental modeling with influence maps for agent decision-making. The result is simple, flexible game agents that are able to respond to dynamic changes to the environment (e.g., rain or fire) while pursuing a goal.
Resumo:
Advances in safety research—trying to improve the collective understanding of motor vehicle crash causes and contributing factors—rest upon the pursuit of numerous lines of research inquiry. The research community has focused considerable attention on analytical methods development (negative binomial models, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might logically seek to know which lines of inquiry might provide the most significant improvements in understanding crash causation and/or prediction. It is the contention of this paper that the exclusion of important variables (causal or surrogate measures of causal variables) cause omitted variable bias in model estimation and is an important and neglected line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant opportunities to better understand contributing factors and/or causes of crashes. This study examines the role of important variables (other than Average Annual Daily Traffic (AADT)) that are generally omitted from intersection crash prediction models. In addition to the geometric and traffic regulatory information of intersection, the proposed model includes many spatial factors such as local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools—representing a mix of potential environmental and human factors that are theoretically important, but rarely used. Results suggest that these variables in addition to AADT have significant explanatory power, and their exclusion leads to omitted variable bias. Provided is evidence that variable exclusion overstates the effect of minor road AADT by as much as 40% and major road AADT by 14%.
Resumo:
Many corporations and individuals realize that environmental sustainability is an urgent problem to address. In this chapter, we contribute to the emerging academic discussion by proposing two innovative approaches for engaging in the development of environmentally sustainable business processes. Specifically, we describe an extended process modeling approach for capturing and documenting the dioxide emissions produced during the execution of a business process. For illustration, we apply this approach to the case of a government Shared Service provider. Second, we then introduce an analysis method for measuring the carbon dioxide emissions produced during the execution of a business process. To illustrate this approach, we apply it in the real-life case of a European airport and show how this information can be leveraged in the re-design of "green" business processes.
Resumo:
Singapore crash statistics from 2001 to 2006 show that the motorcyclist fatality and injury rates per registered vehicle are higher than those of other motor vehicles by 13 and 7 times respectively. The crash involvement rate of motorcyclists as victims of other road users is also about 43%. The objective of this study is to identify the factors that contribute to the fault of motorcyclists involved in crashes. This is done by using the binary logit model to differentiate between at-fault and not-at-fault cases and the analysis is further categorized by the location of the crashes, i.e., at intersections, on expressways and at non-intersections. A number of explanatory variables representing roadway characteristics, environmental factors, motorcycle descriptions, and rider demographics have been evaluated. Time trend effect shows that not-at-fault crash involvement of motorcyclists has increased with time. The likelihood of night time crashes has also increased for not-at-fault crashes at intersections and expressways. The presence of surveillance cameras is effective in reducing not-at-fault crashes at intersections. Wet road surfaces increase at-fault crash involvement at non-intersections. At intersections, not-at-fault crash involvement is more likely on single lane roads or on median lane of multi-lane roads, while on expressways at-fault crash involvement is more likely on the median lane. Roads with higher speed limit have higher at-fault crash involvement and this is also true on expressways. Motorcycles with pillion passengers or with higher engine capacity have higher likelihood of being at-fault in crashes on expressways. Motorcyclists are more likely to be at-fault in collisions involving pedestrians and this effect is higher at night. In multi-vehicle crashes, motorcyclists are more likely to be victims than at fault. Young and older riders are more likely to be at-fault in crashes than middle-aged group of riders. The findings of this study will help to develop more targeted countermeasures to improve motorcycle safety and more cost-effective safety awareness program in motorcyclist training.
Resumo:
Due to grave potential human, environmental and economical consequences of collisions at sea, collision avoidance has become an important safety concern in navigation. To reduce the risk of collisions at sea, appropriate collision avoidance actions need to be taken in accordance with the regulations, i.e., International Regulations for Preventing Collisions at Sea. However, the regulations only provide qualitative rules and guidelines, and therefore it requires navigators to decide on collision avoidance actions quantitatively by using their judgments which often leads to making errors in navigation. To better help navigators in collision avoidance, this paper develops a comprehensive collision avoidance decision making model for providing whether a collision avoidance action is required, when to take action and what action to be taken. The model is developed based on three types of collision avoidance actions, such as course change only, speed change only, and a combination of both. The model has potential to reduce the chance of making human error in navigation by assisting navigators in decision making on collision avoidance actions.