312 resultados para Environmental monitoring - Australia

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental monitoring is becoming critical as human activity and climate change place greater pressures on biodiversity, leading to an increasing need for data to make informed decisions. Acoustic sensors can help collect data across large areas for extended periods making them attractive in environmental monitoring. However, managing and analysing large volumes of environmental acoustic data is a great challenge and is consequently hindering the effective utilization of the big dataset collected. This paper presents an overview of our current techniques for collecting, storing and analysing large volumes of acoustic data efficiently, accurately, and cost-effectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to review the existing instrumental methods to monitor airborne nanoparticle in different types of indoor and outdoor environments in order to detect their presence and to characterise their properties. Firstly the terminology and definitions used in this field are discussed, which is followed by a review of the methods to measure particle physical characteristics including number concentration, size distribution and surface area. An extensive discussion is provided on the direct methods for particle elemental composition measurements, as well as on indirect methods providing information on particle volatility and solubility, and thus in turn on volatile and semivolatile compounds of which the particle is composed. A brief summary of broader considerations related to nanoparticle monitoring in different environments concludes the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A vast amount of research into autonomous underwater navigation has, and is, being conducted around the world. However, typical research and commercial platforms have limited autonomy and are generally unable to navigate efficiently within coral reef environments without tethers and significant external infrastructure. This paper outlines the development and presents experimental results into the performance evaluation of a new robotic vehicle for underwater monitoring and surveying in highly unstructured environments. The hybrid AUV design developed by the CSIRO robotic reef monitoring team realises a compromise between endurance, manoeuvrability and functionality. The vehicle represents a new era in AUV design specifically focused at providing a truly lowcost research capability that will progress environmental monitoring through unaided navigation, cooperative robotics, sensor network distribution and data harvesting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic species recognition plays an important role in assisting ecologists to monitor the environment. One critical issue in this research area is that software developers need prior knowledge of specific targets people are interested in to build templates for these targets. This paper proposes a novel approach for automatic species recognition based on generic knowledge about acoustic events to detect species. Acoustic component detection is the most critical and fundamental part of this proposed approach. This paper gives clear definitions of acoustic components and presents three clustering algorithms for detecting four acoustic components in sound recordings; whistles, clicks, slurs, and blocks. The experiment result demonstrates that these acoustic component recognisers have achieved high precision and recall rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robotic systems are increasingly being utilised as fundamental data-gathering tools by scientists, allowing new perspectives and a greater understanding of the planet and its environmental processes. Today's robots are already exploring our deep oceans, tracking harmful algal blooms and pollution spread, monitoring climate variables, and even studying remote volcanoes. This article collates and discusses the significant advancements and applications of marine, terrestrial, and airborne robotic systems developed for environmental monitoring during the last two decades. Emerging research trends for achieving large-scale environmental monitoring are also reviewed, including cooperative robotic teams, robot and wireless sensor network (WSN) interaction, adaptive sampling and model-aided path planning. These trends offer efficient and precise measurement of environmental processes at unprecedented scales that will push the frontiers of robotic and natural sciences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent monitoring of the ocean is not optimally accomplished by repeatedly executing a fixed path in a fixed location. The ocean is dynamic, and so should the executed paths to monitor and observe it. An open question merging autonomy and optimal sampling is how and when to alter a path/decision, yet achieve desired science objectives. Additionally, many marine robotic deployments can last multiple weeks to months; making it very difficult for individuals to continuously monitor and retask them as needed. This problem becomes increasingly more complex when multiple platforms are operating simultaneously. There is a need for monitoring and adaptation of the robotic fleet via teams of scientists working in shifts; crowds are ideal for this task. In this paper, we present a novel application of crowd-sourcing to extend the autonomy of persistent-monitoring vehicles to enable nonrepetitious sampling over long periods of time. We present a framework that enables the control of a marine robot by anybody with an internet-enabled device. Voters are provided current vehicle location, gathered science data and predicted ocean features through the associated decision support system. Results are included from a simulated implementation of our system on a Wave Glider operating in Monterey Bay with the science objective to maximize the sum of observed nitrate values collected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wastewater containing human sewage is often discharged with little or no treatment into the Antarctic marine environment. Faecal sterols (primarily coprostanol) in sediments have been used for assessment of human sewage contamination in this environment, but in situ production and indigenous faunal inputs can confound such determinations. Using gas chromatography with mass spectral detection profiles of both C27 and C29 sterols, potential sources of faecal sterols were examined in nearshore marine sediments, encompassing sites proximal and distal to the wastewater outfall at Davis Station. Faeces from indigenous seals and penguins were also examined. Faeces from several indigenous species contained significant quantities of coprostanol but not 24-ethylcoprostanol, which is present in human faeces. In situ coprostanol and 24-ethylcoprostanol production was identified by co-production of their respective epi isomers at sites remote from the wastewat er source and in high total organic matter sediments. A C 29 sterols-based polyphasic likelihood assessment matrix for human sewage contamination is presented, which distinguishes human from local fauna faecal inputs and in situ production in the Antarctic environment. Sewage contamination was detected up to 1.5 km from Davis Station.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring the environment with acoustic sensors is an effective method for understanding changes in ecosystems. Through extensive monitoring, large-scale, ecologically relevant, datasets can be produced that can inform environmental policy. The collection of acoustic sensor data is a solved problem; the current challenge is the management and analysis of raw audio data to produce useful datasets for ecologists. This paper presents the applied research we use to analyze big acoustic datasets. Its core contribution is the presentation of practical large-scale acoustic data analysis methodologies. We describe details of the data workflows we use to provide both citizen scientists and researchers practical access to large volumes of ecoacoustic data. Finally, we propose a work in progress large-scale architecture for analysis driven by a hybrid cloud-and-local production-grade website.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyfluoroalkyl chemicals (PFCs) have been used worldwide for more than 50 years in a wide variety of industrial and consumer products. Limited data exist on human exposure to PFCs in the Southern Hemisphere. Human blood serum collected in southeast Queensland, Australia, in 2006−2007 from 2420 donors was pooled according to age (cord blood, 0−0.5, 0.6−1, 1.1−1.5, 1.6−2, 2.1−2.5, 2.6−3, 3.1−3.5, 3.6−4, 4.1−6, 6.1−9, 9.1−12, 12.1−15, 16−30, 31−45, 46−60, and >60 years) and gender and was analyzed for eight PFCs. Across all pools, perfluorooctane sulfonate (PFOS) was detected at the highest mean concentration (15.2 ng/mL) followed by perfluorooctanoate (PFOA, 6.4 ng/mL), perfluorohexane sulfonate (PFHxS, 3.1 ng/mL), perfluorononanoate (PFNA, 0.8 ng/mL), 2-(N-methyl-perfluorooctance sulfonamide) acetate (Me-PFOSA-AcOH, 0.66 ng/mL), and perfluorodecanoate (PFDeA, 0.29 ng/mL). Perfluorooctane sulfonamide was detected in only 24% of the pools, and 2-(N-ethylperfluorooctane sulfonamide) acetate was detected in only one. PFOS concentrations were significantly higher in pools from adult males than from adult females (p = 0.002); no gender differences were apparent in the pools from children (<12 years old). The highest mean concentrations of PFOA, PFHxS, PFNA, PFDeA, and Me-PFOSA-AcOH were found in children <15 years, while PFOS was highest in adults >60 years. Investigation into the sources and exposure pathways in Australia, in particular for children, is necessary as well as continued biomonitoring to determine the potential effects on human concentrations as a result of changes in the PFC manufacturing practices, including the cessation of production of several PFCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.