449 resultados para Environmental enrichment

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment samples from 13 sampling sites in Deception Bay, Australia were analysed for the presence of heavy metals. Enrichment factors, modified contamination indices and Nemerow pollution indices were calculated for each sampling site to determine sediment quality. The results indicate significant pollution of most sites by lead (average enrichment factor (EF) of 13), but there is also enrichment of arsenic (average EF 2.3), zinc (average EF 2.7) and other heavy metals. The modified degree of contamination indices (average 1.0) suggests that there is little contamination. By contrast, the Nemerow pollution index (average 5.8) suggests that Deception Bay is heavily contaminated. Cluster analysis was undertaken to identify groups of elements. Strong correlation between some elements and two distinct clusters of sampling sites based on sediment type was evident. These results have implications for pollution in complex marine environments where there is significant influx of sand and sediment into an estuarine environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study greatly enhanced our knowledge of the potential for geothermal energy development in Queensland as a viable clean energy source in the coming decades. Key outcomes of the project were understanding the first-order controls on the concentration of the heat-producing elements: uranium, thorium and potassium in granitic rocks, and constraining where rocks with the greatest heat-producing potential lie at depth in Queensland. Importantly, new temperature and heat flow maps for southwest Queensland were developed that will greatly assist future exploration efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Expenditure on dental and oral health services in Australia is $3.4 billion AUD annually. This is the sixth highest health cost and accounts for 7 % of total national health expenditure. Approximately 49 % of Australian children aged 6 years have caries experience in their deciduous teeth and this is rising. The aetiology of dental caries involves a complex interplay of individual, behavioural, social, economic, political and environmental conditions, and there is increasing interest in genetic predisposition and epigenetic modification. Methods The Oral Health Sub-study; a cross sectional study of a birth cohort began in November 2012 by examining mothers and their children who were six years old by the time of initiation of the study, which is ongoing. Data from detailed questionnaires of families from birth onwards and data on mothers’ knowledge, attitudes and practices towards oral health collected at the time of clinical examination are used. Subjects’ height, weight and mid-waist circumference are taken and Body Mass Index (BMI) computed, using an electronic Bio-Impedance balance. Dental caries experience is scored using the International Caries Detection and Assessment System (ICDAS). Saliva is collected for physiological measures. Salivary Deoxyribose Nucleic Acid (DNA) is extracted for genetic studies including epigenetics using the SeqCap Epi Enrichment Kit. Targets of interest are being confirmed by pyrosequencing to identify potential epigenetic markers of caries risk. Discussion This study will examine a wide range of potential determinants for childhood dental caries and evaluate inter-relationships amongst them. The findings will provide an evidence base to plan and implement improved preventive strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.