2 resultados para Enoxaparin

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anticoagulant effect of apixaban is due to direct inhibition of FXa in the coagulation cascade. The main advantages apixaban has over the current anti-coagulant drugs is that it is active after oral administration, and its coagulation effect does not require monitoring. Apixaban has been compared to enoxaparin in the prevention of venous thromboembolism associated with knee and hip replacement, where it is as efficacious as enoxaparin, but causes less bleeding. However, apixaban is not the only FXa inhibitor that could replace enoxaparin for this indication, as the FXa inhibitor rivaroxaban is as efficacious and safe as enoxaparin in preventing thromboembolism associated with these surgical procedures. Until the results of the AMPLIFY Phase III trial are known, it is too early to consider apixaban as an alternative to enoxaparin in symptomatic thromboembolism. Apixaban should not be used to prevent thromboembolism in medical immobilised subjects or acute coronary syndromes, as it causes excess bleeding in these conditions without benefit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: An arteriovenous loop (AVL) enclosed in a polycarbonate chamber in vivo, produces a fibrin exudate which acts as a provisional matrix for the development of a tissue engineered microcirculatory network. Objectives: By administering enoxaparin sodium - an inhibitor of fibrin polymerization, the significance of fibrin scaffold formation on AVL construct size (including the AVL, fibrin scaffold, and new tissue growth into the fibrin), growth, and vascularization were assessed and compared to controls. Methods: In Sprague Dawley rats, an AVL was created on femoral vessels and inserted into a polycarbonate chamber in the groin in 3 control groups (Series I) and 3 experimental groups (Series II). Two hours before surgery and 6 hours post-surgery, saline (Series I) or enoxaparin sodium (0.6 mg/kg, Series II) was administered intra-peritoneally. Thereafter, the rats were injected daily with saline (Series I) or enoxaparin sodium (1.5 mg/kg, Series II) until construct retrieval at 3, 10, or 21 days. The retrieved constructs underwent weight and volume measurements, and morphologic/morphometric analysis of new tissue components. Results: Enoxaparin sodium treatment resulted in the development of smaller AVL constructs at 3, 10, and 21 days. Construct weight and volume were significantly reduced at 10 days (control weight 0.337 ± 0.016 g [Mean ± SEM] vs treated 0.228 ± 0.048, [P < .001]: control volume 0.317 ± 0.015 mL vs treated 0.184 ± 0.039 mL [P < .01]) and 21 days (control weight 0.306 ± 0.053 g vs treated 0.198 ± 0.043 g [P < .01]: control volume 0.285 ± 0.047 mL vs treated 0.148 ± 0.041 mL, [P < .01]). Angiogenesis was delayed in the enoxaparin sodium-treated constructs with the absolute vascular volume significantly decreased at 10 days (control vascular volume 0.029 ± 0.03 mL vs treated 0.012 ± 0.002 mL [P < .05]). Conclusion: In this in vivo tissue engineering model, endogenous, extra-vascularly deposited fibrin volume determines construct size and vascular growth in the first 3 weeks and is, therefore, critical to full construct development.