70 resultados para Energy Potential
em Queensland University of Technology - ePrints Archive
Resumo:
This paper proposes a method for designing set-point regulation controllers for a class of underactuated mechanical systems in Port-Hamiltonian System (PHS) form. A new set of potential shape variables in closed loop is proposed, which can replace the set of open loop shape variables-the configuration variables that appear in the kinetic energy. With this choice, the closed-loop potential energy contains free functions of the new variables. By expressing the regulation objective in terms of these new potential shape variables, the desired equilibrium can be assigned and there is freedom to reshape the potential energy to achieve performance whilst maintaining the PHS form in closed loop. This complements contemporary results in the literature, which preserve the open-loop shape variables. As a case study, we consider a robotic manipulator mounted on a flexible base and compensate for the motion of the base while positioning the end effector with respect to the ground reference. We compare the proposed control strategy with special cases that correspond to other energy shaping strategies previously proposed in the literature.
Resumo:
The cation\[Si,C,O](+) has been generated by 1) the electron ionisation (EI) of tetramethoxysilane and 2) chemical ionisation (CI) of a mixture of silane and carbon monoxide. Collisional activation (CA) experiments performed for mass-selected \[Si,C,O](+), generated by using both methods, indicate that the structure is not inserted OSiC+; however, a definitive structural assignment as Si+-CO, Si+-OC or some cyclic variant is impossible based on these results alone. Neutralisation-reionisation (+NR+) experiments for EI-generated \[Si,C,O](+) reveal a small peak corresponding to SiC+, but no detectable SiO+ signal, and thus establishes the existence of the Si+-CO isomer. CCSD(T)//B3LYP calculations employing a triple-zeta basis set have been used to explore the doublet and quartet potential-energy surfaces of the cation, as well as some important neutral states The results suggest that both Si+-CO and Si+ - OC isomers are feasible; however, the global minimum is (2)Pi SiCO+. Isomeric (2)Pi SiOC+ is 12.1 kcal mol(-1) less stable than (2)Pi SiCO+, and all quartet isomers are much higher in energy. The corresponding neutrals Si-CO and Si-OC are also feasible, but the lowest energy Si - OC isomer ((3)A") is bound by only 1.5 kcal mol(-1). We attribute most, if nor all, of the recovery signal in the +NR' experiment to SiCO+ survivor ions. The nature of the bonding in the lowest energy isomers of Si+ -(CO,OC) is interpreted with the aid of natural bond order analyses, and the ground stale bonding of SiCO+ is discussed in relation to classical analogues such as metal carbonyls and ketenes.
Resumo:
This was a comparative study of the possibility of a net zero energy house in Queensland, Australia. It examines the actual energy use and thermal comfort conditions of an occupied Brisbane home and compares performance with the 10 star scale rating scheme for Australian residential buildings. An adaptive comfort psychometric chart was developed for this analysis. The house's capacity for the use of the natural ventilation was studied by CFD modelling. This study showed that the house succeeded in achieving the definition of net zero energy on an annual and monthly basis for lighting, cooking and space heating / cooling and for 70% of days for lighting, hot water and cooking services.
Resumo:
Given the shift toward energy efficient vehicles (EEVs) in recent years, it is important that the effects of this transition are properly examined. This paper investigates some of these effects by analyzing annual kilometers traveled (AKT) of private vehicle owners in Stockholm in 2008. The difference in emissions associated with EEV adoption is estimated, along with the effect of a congestion-pricing exemption for EEVs on vehicle usage. Propensity score matching is used to compare AKT rates of different vehicle owner groups based on the treatments of: EEV ownership and commuting across the cordon, controlling for confounding factors such as demographics. Through this procedure, rebound effects are identified, with some EEV owners found to have driven up to 12.2% further than non-EEV owners. Although some of these differences could be attributed to the congestion-pricing exemption, the results were not statistically significant. Overall, taking into account lifecycle emissions of each fuel type, average EEV emissions were 50.5% less than average non-EEV emissions, with this reduction in emissions offset by 2.0% due to rebound effects. Although it is important for policy-makers to consider the potential for unexpected negative effects in similar transitions, the overall benefit of greatly reduced emissions appears to outweigh any rebound effects present in this case study.
Resumo:
Australia’s current pattern of residential development is resulting in urban sprawl and highlights the necessity for development to be more sustainable to avoid unnecessary demand on natural resources and to prevent environmental degradation and to safeguard the environment for future generations. This report summarises the results from a series of cases studies that examined the link between sub-divisional layout and dwelling energy efficiency, the possibility for a lot-rating tool and the potential for on site electricity generation.
Resumo:
Worldwide, the current pattern of urban development is unsustainable and metropolitan planning and development strategies deliver poor environmental outcomes in relation to energy production. As a result, an increasing number of governments and private sector development companies are initiating projects that aim to deliver enhanced environmental outcomes rather than a ‘business as usual’ approach. This paper will summarise the findings from a study that explored the link between building orientation and energy efficiencies in sub-tropical and tropical climates. The study used a new thermal modelling software tool developed by CSIRO that responds more accurately to residential heating and cooling energy performance in those climate zones. This software tool responds to industry criticisms regarding cold climate modelling systems that do not make sufficient allowance for natural ventilation. The study examined a range of low, medium and high-density dwelling types and investigated the impact of orientation, insulation, ventilation and shading devices on energy efficiencies. This paper will examine the findings from the medium and high-density case study developments as these are relevant to residential developments in many South East Asian countries, such as Singapore, Hong Kong and Malaysia. Finally, the paper will explore the potential benefits that medium and high-density residential developments have in the development of ‘solar cities’ and ‘solar suburbs’.
Resumo:
Energy efficient lubricants are becoming increasingly popular. This is due to a global increase in environmental awareness combined with the potential of reducing operating costs. A new test method of evaluating the energy efficiency of gear oils has been described in this report. The method involves measuring the power required by an FZG test rig to run while using a particular test lubricant. For each oil that was being evaluated, the rig was run for 10 minutes at a load stage of 10. Six extreme pressure (EP) industrial gear oils of mineral base were tested. The difference in power requirements between the best and the worst performing oils was 2.77 and 3.24 kW, respectively. This equates to a 14.6% reduction in power, a significant amount if considered in relation to a high powered industrial machine. The oils of superior performance were noticed to run at reduced temperatures. They were also more expensive than the other products of lesser performance.
Resumo:
The biomechanical or biophysical principles can be applied to study biological structures in their modern or fossil form. Bone is an important tissue in paleontological studies as it is a commonly preserved element in most fossil vertebrates, and can often allow its microstructures such as lacuna and canaliculi to be studied in detail. In this context, the principles of Fluid Mechanics and Scaling Laws have been previously applied to enhance the understanding of bone microarchitecture and their implications for the evolution of hydraulic structures to transport fluid. It has been shown that the microstructure of bone has evolved to maintain efficient transport between the nutrient supply and cells, the living components of the tissue. Application of the principle of minimal expenditure of energy to this analysis shows that the path distance comprising five or six lamellar regions represents an effective limit for fluid and solute transport between the nutrient supply and cells; beyond this threshold, hydraulic resistance in the network increases and additional energy expenditure is necessary for further transportation. This suggests an optimization of the size of bone’s building blocks (such as osteon or trabecular thickness) to meet the metabolic demand concomitant to minimal expenditure of energy. This biomechanical aspect of bone microstructure is corroborated from the ratio of osteon to Haversian canal diameters and scaling constants of several mammals considered in this study. This aspect of vertebrate bone microstructure and physiology may provide a basis of understanding of the form and function relationship in both extinct and extant taxa.
Resumo:
Objective: Walking is commonly recommended to help with weight management. We measured total energy expenditure (TEE) and its components to quantify the impact of increasing exercise-induced energy expenditure (ExEE) on other components of TEE. Methods: Thirteen obese women underwent an 8-week walking group intervention. TEE was quantified using doubly labeled water, ExEE was quantified using heart rate monitors, daily movement was assessed by accelerometry and resting metabolic rate was measured using indirect calorimetry. Results: Four of the 13 participants achieved the target of 1500 kcal wk−1 of ExEE and all achieved 1000 kcal wk−1. The average ExEE achieved by the group across the 8 weeks was 1434 ± 237 kcal wk−1. Vigorous physical activity, as assessed by accelerometry, increased during the intervention by an average of 30 min per day. Non-exercise activity thermogenesis (NEAT) decreased, on average, by 175 kcal d−1 (−22%) from baseline to the intervention and baseline fitness was correlated with change in NEAT. Conclusions: Potential alterations in non-exercise activity should be considered when exercise is prescribed. The provision of appropriate education on how to self-monitor daily activity levels may improve intervention outcomes in groups who are new to exercise. Practice implications: Strategies to sustain incidental and light physical activity should be offered to help empower individuals as they develop and maintain healthy and long-lasting lifestyle habits.
Resumo:
The modal strain energy method, which depends on the vibration characteristics of the structure, has been reasonably successful in identifying and localising damage in the structure. However, existing strain energy methods require the first few modes to be measured to provide meaningful damage detection. Use of individual modes with existing strain energy methods may indicate false alarms or may not detect the damage at or near the nodal points. This paper proposes a new modal strain energy based damage index which can detect and localize the damage using any one of the modes measured and illustrates its application for beam structures. It becomes evident that the proposed strain energy based damage index also has potential for damage quantification.
Resumo:
Background: The enthesis of the plantar fascia is thought to play an important role in stress dissipation. However, the potential link between entheseal thickening characteristic of enthesopathy and the stress-dissipating properties of the intervening plantar fat pad have not been investigated. Purpose: This study was conducted to identify whether plantar fat pad mechanics explain variance in the thickness of the fascial enthesis in individuals with and without plantar enthesopathy. Study Design: Case-control study; Level of evidence, 3. Methods: The study population consisted of 9 patients with unilateral plantar enthesopathy and 9 asymptomatic, individually matched controls. The thickness of the enthesis of the symptomatic, asymptomatic, and a matched control limb was acquired using high-resolution ultrasound. The compressive strain of the plantar fat pad during walking was estimated from dynamic lateral radiographs acquired with a multifunction fluoroscopy unit. Peak compressive stress was simultaneously acquired via a pressure platform. Principal viscoelastic parameters were estimated from subsequent stress-strain curves. Results: The symptomatic fascial enthesis (6.7 ± 2.0 mm) was significantly thicker than the asymptomatic enthesis (4.2 ± 0.4 mm), which in turn was thicker than the enthesis (3.3 ± 0.4 mm) of control limbs (P < .05). There was no significant difference in the mean thickness, peak stress, peak strain, or secant modulus of the plantar fat pad between limbs. However, the energy dissipated by the fat pad during loading and unloading was significantly lower in the symptomatic limb (0.55 ± 0.17) when compared with asymptomatic (0.69 ± 0.13) and control (0.70 ± 0.09) limbs (P < .05). The sonographic thickness of the enthesis was correlated with the energy dissipation ratio of the plantar fat pad (r = .72, P < .05), but only in the symptomatic limb. Conclusion: The energy-dissipating properties of the plantar fat pad are associated with the sonograpic appearance of the enthesis in symptomatic limbs, providing a previously unidentified link between the mechanical behavior of the plantar fat pad and enthesopathy.
Resumo:
The progress of technology has led to the increased adoption of energy monitors among household energy consumers. While the monitors available on the market deliver real-time energy usage feedback to the consumer, the format of this data is usually unengaging and mundane. Moreover, it fails to address consumers with different motivations and needs to save and compare energy. This paper presents a study that seeks to provide initial indications for motivation-specific design of energy-related feedback. We focus on comparative feedback supported by a community of energy consumers. In particular, we examine eco-visualisations, temporal self-comparison, norm comparison, one-on-one comparison and ranking, whereby the last three allow us to explore the potential of socialising energy-related feedback. These feedback types were integrated in EnergyWiz – a mobile application that enables users to compare with their past performance, neighbours, contacts from social networking sites and other EnergyWiz users. The application was evaluated in personal, semi-structured interviews, which provided first insights on how to design motivation-related comparative feedback.
Resumo:
The paper presents a demand side response scheme,which assists electricity consumers to proactively control own demands in such a way to deliberately avert congestion periods on the electrical network. The scheme allows shifting loads from peak to low demand periods in an attempt to flattening the national electricity requirement. The scheme can be concurrently used to accommodate the utilization of renewable energy sources,that might be available at user’s premises. In addition the scheme allows a full-capacity utilization of the available electrical infrastructure by organizing a wide-use of electric vehicles. The scheme is applicable in the Eastern and Southern States of Australia managed by the Australian Energy Market Operator. The results indicate the potential of the scheme to achieve energy savings and release capacity to accommodate renewable energy and electrical vehicle technologies.