266 resultados para Encoding (symbols)
em Queensland University of Technology - ePrints Archive
Resumo:
Background A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of a malaria DNA vaccine is presented. A 40 kHz ultrasonic atomization device was used to create the microparticles from a feedstock containing 5 volumes of 0.5% w/v PLGA in acetone and 1 volume of condensed DNA which was fed at a flow rate of 18ml h-1. The plasmid DNA vectors encoding a malaria protein were condensed with a cationic polymer before atomization. Results High levels of gene expression in vitro were observed in COS-7 cells transfected with condensed DNA at a nitrogen to phosphate (N/P) ratio of 10. At this N/P ratio, the condensed DNA exhibited a monodispersed nanoparticle size (Z-average diameter of 60.8 nm) and a highly positive zeta potential of 38.8mV. The microparticle formulations of malaria DNA vaccine were quality assessed and it was shown that themicroparticles displayed high encapsulation efficiencies between 82-96% and a narrow size distribution in the range of 0.8-1.9 μm. In vitro release profile revealed that approximately 82% of the DNA was released within 30 days via a predominantly diffusion controlledmass transfer system. Conclusions This ultrasonic atomization technique showed excellent particle size reproducibility and displayed potential as an industrially viable approach for the formulation of controlled release particles.
Resumo:
Process models provide visual support for analyzing and improving complex organizational processes. In this paper, we discuss differences of process modeling languages using cognitive effectiveness considerations, to make statements about the ease of use and quality of user experience. Aspects of cognitive effectiveness are of importance for learning a modeling language, creating models, and understanding models. We identify the criteria representational clarity, perceptual discriminability, perceptual immediacy, visual expressiveness, and graphic parsimony to compare and assess the cognitive effectiveness of different modeling languages. We apply these criteria in an analysis of the routing elements of UML Activity Diagrams, YAWL, BPMN, and EPCs, to uncover their relative strengths and weaknesses from a quality of user experience perspective. We draw conclusions that are relevant to the usability of these languages in business process modeling projects.
Resumo:
In computational linguistics, information retrieval and applied cognition, words and concepts are often represented as vectors in high dimensional spaces computed from a corpus of text. These high dimensional spaces are often referred to as Semantic Spaces. We describe a novel and efficient approach to computing these semantic spaces via the use of complex valued vector representations. We report on the practical implementation of the proposed method and some associated experiments. We also briefly discuss how the proposed system relates to previous theoretical work in Information Retrieval and Quantum Mechanics and how the notions of probability, logic and geometry are integrated within a single Hilbert space representation. In this sense the proposed system has more general application and gives rise to a variety of opportunities for future research.
Resumo:
Infectious cDNA clones of RNA viruses are important research tools, but flavivirus cDNA clones have proven difficult to assemble and propagate in bacteria. This has been attributed to genetic instability and/or host cell toxicity, however the mechanism leading to these difficulties has not been fully elucidated. Here we identify and characterize an efficient cryptic bacterial promoter in the cDNA encoding the dengue virus (DENV) 5′ UTR. Following cryptic transcription in E. coli, protein expression initiated at a conserved in-frame AUG that is downstream from the authentic DENV initiation codon, yielding a DENV polyprotein fragment that was truncated at the N-terminus. A more complete understanding of constitutive viral protein expression in E. coli might help explain the cloning and propagation difficulties generally observed with flavivirus cDNA.
Resumo:
This paper develops and evaluates an enhanced corpus based approach for semantic processing. Corpus based models that build representations of words directly from text do not require pre-existing linguistic knowledge, and have demonstrated psychologically relevant performance on a number of cognitive tasks. However, they have been criticised in the past for not incorporating sufficient structural information. Using ideas underpinning recent attempts to overcome this weakness, we develop an enhanced tensor encoding model to build representations of word meaning for semantic processing. Our enhanced model demonstrates superior performance when compared to a robust baseline model on a number of semantic processing tasks.
Resumo:
The use of symbols and abbreviations adds uniqueness and complexity to the mathematical language register. In this article, the reader’s attention is drawn to the multitude of symbols and abbreviations which are used in mathematics. The conventions which underpin the use of the symbols and abbreviations and the linguistic difficulties which learners of mathematics may encounter due to the inclusion of the symbolic language are discussed. 2010 NAPLAN numeracy tests are used to illustrate examples of the complexities of the symbolic language of mathematics.
Resumo:
This paper outlines a novel approach for modelling semantic relationships within medical documents. Medical terminologies contain a rich source of semantic information critical to a number of techniques in medical informatics, including medical information retrieval. Recent research suggests that corpus-driven approaches are effective at automatically capturing semantic similarities between medical concepts, thus making them an attractive option for accessing semantic information. Most previous corpus-driven methods only considered syntagmatic associations. In this paper, we adapt a recent approach that explicitly models both syntagmatic and paradigmatic associations. We show that the implicit similarity between certain medical concepts can only be modelled using paradigmatic associations. In addition, the inclusion of both types of associations overcomes the sensitivity to the training corpus experienced by previous approaches, making our method both more effective and more robust. This finding may have implications for researchers in the area of medical information retrieval.
Resumo:
In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the relevant literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such assumption is easily violated in the more challenging face verification scenario, where an algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person. In this paper, we first discuss why previous attempts with SR might not be applicable to verification problems. We then propose an alternative approach to face verification via SR. Specifically, we propose to use explicit SR encoding on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which are then concatenated to form an overall face descriptor. Due to the deliberate loss spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment & various image deformations. Within the proposed framework, we evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN), and an implicit probabilistic technique based on Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the proposed local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, in both verification and closed-set identification problems. The experiments also show that l1-minimisation based encoding has a considerably higher computational than the other techniques, but leads to higher recognition rates.
Resumo:
This project was a step forward in developing and evaluating a novel, mathematical model that can deduce the meaning of words based on their use in language. This model can be applied to a wide range of natural language applications, including the information seeking process most of us undertake on a daily basis.
Resumo:
This thesis makes several contributions towards improved methods for encoding structure in computational models of word meaning. New methods are proposed and evaluated which address the requirement of being able to easily encode linguistic structural features within a computational representation while retaining the ability to scale to large volumes of textual data. Various methods are implemented and evaluated on a range of evaluation tasks to demonstrate the effectiveness of the proposed methods.
Resumo:
Reports of children and teachers taking transformative social action in schools are becoming rare. This session illustrates how teachers, while feeling the weight of accountability testing in schools, are active agents who can re-imagine literacy pedagogy to change elements of their community. It reports the critical dimensions of a movie-making unit with Year 5 students within a school reform project. The students filmed interviews with people in the local shops to gather lay-knowledge and experiences of the community. The short documentaries challenged stereotypes about what it is like to live in Logan, and critically identified potential improvements to public spaces in the local community. A student panel presented these multimodal texts at a national conference of social activists and community leaders. The report does not valorize or privilege local or lay knowledge over dominant knowledge, but argues that prescribed curriculum should not hinder the capacity for critical consciousness.
Resumo:
Potato leafroll virus (PLRV) is a positive-strand RNA virus that generates subgenomic RNAs (sgRNA) for expression of 3' proximal genes. Small RNA (sRNA) sequencing and mapping of the PLRV-derived sRNAs revealed coverage of the entire viral genome with the exception of four distinctive gaps. Remarkably, these gaps mapped to areas of PLRV genome with extensive secondary structures, such as the internal ribosome entry site and 5' transcriptional start site of sgRNA1 and sgRNA2. The last gap mapped to ~500. nt from the 3' terminus of PLRV genome and suggested the possible presence of an additional sgRNA for PLRV. Quantitative real-time PCR and northern blot analysis confirmed the expression of sgRNA3 and subsequent analyses placed its 5' transcriptional start site at position 5347 of PLRV genome. A regulatory role is proposed for the PLRV sgRNA3 as it encodes for an RNA-binding protein with specificity to the 5' of PLRV genomic RNA. © 2013.
Resumo:
Barley yellow dwarf virus-PAV (BYDV-PAV) is the most serious and widespread virus of cereals worldwide. Natural resistance genes against this luteovirus give inadequate control, and previous attempts to introduce synthetic resistance into cereals have produced variable results. In an attempt to generate barley with protection against BYDV-PAV, plants were transformed with a transgene designed to produce hairpin (hp)RNA containing BYDV-PAV sequences. From 25 independent barley lines transformed with the BYDV-PAV hpRNA construct, nine lines showed extreme resistance to the virus and the majority of these contained a single transgene. In the progeny of two independent transgenic lines, inheritance of a single transgene consistently correlated with protection against BYDV-PAV. This protection was rated as immunity because the virus could not be detected in the challenged plants by ELISA nor recovered by aphid feeding experiments. In the field, BYDV-PAV is sometimes associated with the related luteovirus Cereal yellow dwarf virus-RPV (CYDV-RPV). When the transgenic plants were challenged with BYDV-PAV and CYDV-RPV together, the plants were susceptible to CYDV-RPV but immune to BYDV-PAV. This shows that the immunity is virus-specific and not broken down by the presence of CYDV. It suggests that CYDV-RPV does not encode a silencing-suppressor gene or that its product does not protect BYDV-PAV against the plant's RNAi-like defence mechanism. Either way, our results indicate that the BYDV-PAV immunity will be robust in the field and is potentially useful in minimizing losses in cereal production worldwide.