984 resultados para Ellipsoid approach

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes an optimized approach of designing in which a model specially shaped composite tank for spacecrafts is built by applying finite element analysis. The composite layers are preliminarily designed by combining quasi-network design method with numerical simulation, which determines the ratio between the angle and the thickness of layers as the initial value of the optimized design. By adopting an adaptive simulated annealing algorithm, the angles and the numbers of layers at each angle are optimized to minimize the weight of structure. Based on this, the stacking sequence of composite layers is formulated according to the number of layers in the optimized structure by applying the enumeration method and combining the general design parameters. Numerical simulation is finally adopted to calculate the buckling limit of tanks in different designing methods. This study takes a composite tank with a cone-shaped cylinder body as example, in which ellipsoid head section and outer wall plate are selected as the object to validate this method. The result shows that the quasi-network design method can improve the design quality of composite material layer in tanks with complex preliminarily loading conditions. The adaptive simulated annealing algorithm can reduce the initial design weight by 30%, which effectively probes the global optimal solution and optimizes the weight of structure. It can be therefore proved that, this optimization method is capable of designing and optimizing specially shaped composite tanks with complex loading conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of ICT (information and communication technology) integration is emerging as an area of research interest with such systems as Education Queensland including it in their recently released list of research priorities. Studies to trial differing integration measurement instruments have taken place within Australia in the last few years, particularly Western Australia (Trinidad, Clarkson, & Newhouse, 2004; Trinidad, Newhouse & Clarkson, 2005), Tasmania (Fitzallen 2005) and Queensland (Finger, Proctor, & Watson, 2005). This paper will add to these investigations by describing an alternate and original methodological approach which was trialled in a small-scale pilot study conducted jointly by Queensland Catholic Education Commission (QCEC) and the Centre of Learning Innovation, Queensland University of Technology (QUT) in late 2005. The methodology described is based on tasks which, through a process of profiling, can be seen to be artefacts which embody the internal and external factors enabling and constraining ICT integration.