89 resultados para Electrical relaxation

em Queensland University of Technology - ePrints Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Power transformers are one of the most important and costly equipment in power generation, transmission and distribution systems. Current average age of transformers in Australia is around 25 years and there is a strong economical tendency to use them up to 50 years or more. As the transformers operate, they get degraded due to different loading and environmental operating stressed conditions. In today‘s competitive energy market with the penetration of distributed energy sources, the transformers are stressed more with minimum required maintenance. The modern asset management program tries to increase the usage life time of power transformers with prognostic techniques using condition indicators. In the case of oil filled transformers, condition monitoring methods based on dissolved gas analysis, polarization studies, partial discharge studies, frequency response analysis studies to check the mechanical integrity, IR heat monitoring and other vibration monitoring techniques are in use. In the current research program, studies have been initiated to identify the degradation of insulating materials by the electrical relaxation technique known as dielectrometry. Aging leads to main degradation products like moisture and other oxidized products due to fluctuating thermal and electrical loading. By applying repetitive low frequency high voltage sine wave perturbations in the range of 100 to 200 V peak across available terminals of power transformer, the conductive and polarization parameters of insulation aging are identified. An in-house novel digital instrument is developed to record the low leakage response of repetitive polarization currents in three terminals configuration. The technique is tested with known three transformers of rating 5 kVA or more. The effects of stressing polarization voltage level, polarizing wave shapes and various terminal configurations provide characteristic aging relaxation information. By using different analyses, sensitive parameters of aging are identified and it is presented in this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23–39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2–3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0Æ05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0Æ05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0Æ05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composites with carbon nanotubes are becoming increasingly used in energy storage and electronic devices, due to incorporated excellent properties from carbon nanotubes and polymers. Although their properties make them more attractive than conventional smart materials, their electrical properties are found to be temperature-dependent which is important to consider for the design of devices. To study the effects of temperature in electrically conductive multi-wall carbon nanotube/epoxy composites, thin films were prepared and the effect of temperature on the resistivity, thermal properties and Raman spectral characteristics of the composite films was evaluated. Resistivity-temperature profiles showed three distinct regions in as-cured samples and only two regions in samples whose thermal histories had been erased. In the vicinity of the glass transition temperature, the as-cured composites exhibited pronounced resistivity and enthalpic relaxation peaks, which both disappeared after erasing the composites’ thermal histories by temperature cycling. Combined DSC, Raman spectroscopy, and resistivity-temperature analyses indicated that this phenomenon can be attributed to the physical aging of the epoxy matrix and that, in the region of the observed thermal history-dependent resistivity peaks, structural rearrangement of the conductive carbon nanotube network occurs through a volume expansion/relaxation process. These results have led to an overall greater understanding of the temperature-dependent behaviour of conductive carbon nanotube/epoxy composites, including the positive temperature coefficient effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma polymerized c-terpinene (pp2GT) thin films are fabricated using RF plasma polymerization. MIM structures are fabricated and using the capacitive structures dielectric properties of the material is studied. The dielectric constant values are found to be in good agreement with those determined from ellipsometric data. At a frequency of 100 kHz, the dielectric constant varies with RF deposition power, from 3.69 (10 W) to 3.24 (75 W). The current density–voltage (J2V) characteristics of pp–GT thin films are investigated as a function of RF deposition power at room temperature to determine the resistivity and DC conduction mechanism of the films. At higher applied voltage region, Schottky conduction is the dominant DC conduction mechanism. The capacitance and the loss tangent are found to be frequency dependent. The conductivity of the pp2GT thin films is found to decrease from 1.39 3 10212 S/cm (10 W) to 1.02 3 10213 S/cm (75 W) and attributed to the change in the chemical composition and structure of the polymer. The breakdown field for pp–GT thin films increases from 1.48 MV/cm (10 W) to 2 MV/cm (75 W). A single broad relaxation peak is observed indicating the contribution of multiple relaxations to the dielectric response for temperature dependent J2V. The distribution of these relaxation times is determined through regularization methods. VC 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42318.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transverse spin relaxation rates of water protons in articular cartilage and tendon depend on the orientation of the tissue relative to the applied static magnetic field. This complicates the interpretation of magnetic resonance images of these tissues. At the same time, relaxation data can provide information about their organisation and microstructure. We present a theoretical analysis of the anisotropy of spin relaxation of water protons observed in fully hydrated cartilage. We demonstrate that the anisotropy of transverse relaxation is due almost entirely to intramolecular dipolar coupling modulated by a specific mode of slow molecular motion: the diffusion of water molecules in the hydration shell of a collagen fibre around the fibre, such that the molecular director remains perpendicular to the fibre. The theoretical anisotropy arising from this mechanism follows the “magic-angle” dependence observed in magnetic-resonance measurements of cartilage and tendon and is in good agreement with the available experimental results. We discuss the implications of the theoretical findings for MRI of ordered collagenous tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asset registry arguably forms the core system that needs to be in place before other systems can operate or interoperate. Most systems have rudimentary asset registry functionality that store assets, relationships, or characteristics, and this leads to different asset management systems storing similar sets of data in multiple locations in an organisation. As organisations have been slowly moving their information architecture toward a service-oriented architecture, they have also been consolidating their multiple data stores, to form a “single point of truth”. As part of a strategy to integrate several asset management systems in an Australian railway organisation, a case study for developing a consolidated asset registry was conducted. A decision was made to use the MIMOSA OSA-EAI CRIS data model as well as the OSA-EAI Reference Data in building the platform due to the standard’s relative maturity and completeness. A pilot study of electrical traction equipment was selected, and the data sources feeding into the asset registry were primarily diagrammatic based. This paper presents the pitfalls encountered, approaches taken, and lessons learned during the development of the asset registry.