5 resultados para Eigenfunctions
em Queensland University of Technology - ePrints Archive
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.
Resumo:
Load modelling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is parametric sensitivity analysis. A composite load model-based load sensitivity analysis framework is proposed. It enables comprehensive investigation into load modelling impacts on system stability considering the dynamic interactions between load and system dynamics. The effect of the location of individual as well as patches of composite loads in the vicinity on the sensitivity of the oscillatory modes is investigated. The impact of load composition on the overall sensitivity of the load is also investigated.
Resumo:
Abstract—In this paper we investigate the capacity of a general class of the slotted amplify and forward (SAF) relaying protocol where multiple, though a finite number of relays may transmit in a given cooperative slot and the relay terminals being half-duplex have a finite slot memory capacity. We derive an expression for the capacity per channel use of this generalized SAF channel assuming all source to relay, relay to destination and source to destination channel gains are independent and modeled as complex Gaussian. We show through the analysis of eigenvalue distributions that the increase in limiting capacity per channel use is marginal with the increase of relay terminals.
Resumo:
The three-component reaction-diffusion system introduced in [C. P. Schenk et al., Phys. Rev. Lett., 78 (1997), pp. 3781–3784] has become a paradigm model in pattern formation. It exhibits a rich variety of dynamics of fronts, pulses, and spots. The front and pulse interactions range in type from weak, in which the localized structures interact only through their exponentially small tails, to strong interactions, in which they annihilate or collide and in which all components are far from equilibrium in the domains between the localized structures. Intermediate to these two extremes sits the semistrong interaction regime, in which the activator component of the front is near equilibrium in the intervals between adjacent fronts but both inhibitor components are far from equilibrium there, and hence their concentration profiles drive the front evolution. In this paper, we focus on dynamically evolving N-front solutions in the semistrong regime. The primary result is use of a renormalization group method to rigorously derive the system of N coupled ODEs that governs the positions of the fronts. The operators associated with the linearization about the N-front solutions have N small eigenvalues, and the N-front solutions may be decomposed into a component in the space spanned by the associated eigenfunctions and a component projected onto the complement of this space. This decomposition is carried out iteratively at a sequence of times. The former projections yield the ODEs for the front positions, while the latter projections are associated with remainders that we show stay small in a suitable norm during each iteration of the renormalization group method. Our results also help extend the application of the renormalization group method from the weak interaction regime for which it was initially developed to the semistrong interaction regime. The second set of results that we present is a detailed analysis of this system of ODEs, providing a classification of the possible front interactions in the cases of $N=1,2,3,4$, as well as how front solutions interact with the stationary pulse solutions studied earlier in [A. Doelman, P. van Heijster, and T. J. Kaper, J. Dynam. Differential Equations, 21 (2009), pp. 73–115; P. van Heijster, A. Doelman, and T. J. Kaper, Phys. D, 237 (2008), pp. 3335–3368]. Moreover, we present some results on the general case of N-front interactions.