213 resultados para EXTREME PRECIPITATION EVENTS

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Understanding the relationship between extreme weather events and childhood hand, foot and mouth disease (HFMD) is important in the context of climate change. This study aimed to quantify the relationship between extreme precipitation and childhood HFMD in Hefei, China, and further, to explore whether the association varied across urban and rural areas. Methods Daily data on HFMD counts among children aged 0–14 years from 2010 January 1st to 2012 December 31st were retrieved from Hefei Center for Disease Control and Prevention. Daily data on mean temperature, relative humidity and precipitation during the same period were supplied by Hefei Bureau of Meteorology. We used a Poisson linear regression model combined with a distributed lag non-linear model to assess the association between extreme precipitation (≥ 90th precipitation) and childhood HFMD, controlling for mean temperature, humidity, day of week, and long-term trend. Results There was a statistically significant association between extreme precipitation and childhood HFMD. The effect of extreme precipitation on childhood HFMD was the greatest at six days lag, with a 5.12% (95% confident interval: 2.7–7.57%) increase of childhood HFMD for an extreme precipitation event versus no precipitation. Notably, urban children and children aged 0–4 years were particularly vulnerable to the effects of extreme precipitation. Conclusions Our findings indicate that extreme precipitation may increase the incidence of childhood HFMD in Hefei, highlighting the importance of protecting children from forthcoming extreme precipitation, particularly for those who are young and from urban areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inner city Brisbane suburbs of the West End peninsula are poised for redevelopment. Located within walking distance to CBD workplaces, home to Queensland’s highest value cultural precinct, and high quality riverside parklands, there is currently a once-in-a-lifetime opportunity to redevelop parts of the suburb to create a truly urban neighbourhood. According to a local community association, local residents agree and embrace the concept of high-density living, but are opposed to the high-rise urban form (12 storeys) advocated by the City’s planning authority (BCC, 2011) and would prefer to see medium-rise (5-8 storeys) medium-density built form. Brisbane experienced a major flood event which inundated the peninsula suburbs of West End in summer January 2011. The vulnerability of taller buildings to the vagaries of climate and more extreme weather events and their reliance on main electricity was exposed when power outages immediately before, during and after the flood disaster seriously limited occupants’ access and egress when elevators were disabled. Not all buildings were flooded but dwellings quickly became unliveable due to disabled air-conditioning. Some tall buildings remained uninhabitable for several weeks after the event. This paper describes an innovative design research method applied to the complex problem of resilient, sustainable neighbourhood form in subtropical cities, in which a thorough comparative analysis of a range of multiple-dwelling types has revealed the impact that government policy regarding design of the physical environment has on a community’s resilience. The outcomes advocate the role of climate-responsive design in averting the rising human capital and financial costs of natural disasters and climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Climate Commission recently outlined the trend of major extreme weather events in different regions of Australia, including heatwaves, floods, droughts, bushfires, cyclones and storms. These events already impose an enormous health and financial burden onto society and are projected to occur more frequently and intensely. Unless we act now, further financial losses and increasing health burdens seem inevitable. We seek to highlight the major areas for interdisciplinary investigation, identify barriers and formulate response strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Extreme heat events (both heat waves and extremely hot days) are increasing in frequency and duration globally and cause more deaths in Australia than any other extreme weather event. Numerous studies have demonstrated a link between extreme heat events and an increased risk of morbidity and death. In this study, the researchers sought to identify if extreme heat events in the Tasmanian population were associated with any changes in emergency department admissions to the Royal Hobart Hospital (RHH) for the period 2003-2010. Methods: Non-identifiable RHH emergency department data and climate data from the Australian Bureau of Meteorology were obtained for the period 2003-2010. Statistical analyses were conducted using the computer statistical computer software ‘R’ with a distributed lag non-linear model (DLNM) package used to fit a quassi-Poisson generalised linear regression model. Results: This study showed that RR of admission to RHH during 2003-2010 was significant over temperatures of 24 C with a lag effect lasting 12 days and main effect noted one day after the extreme heat event. Discussion: This study demonstrated that extreme heat events have a significant impact on public hospital admissions. Two limitations were identified: admissions data rather than presentations data were used and further analysis could be done to compare types of admissions and presentations between heat and non-heat events. Conclusion: With the impacts of climate change already being felt in Australia, public health organisations in Tasmania and the rest of Australia need to implement adaptation strategies to enhance resilience to protect the public from the adverse health effects of heat events and climate change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy prices are highly volatile and often feature unexpected spikes. It is the aim of this paper to examine whether the occurrence of these extreme price events displays any regularities that can be captured using an econometric model. Here we treat these price events as point processes and apply Hawkes and Poisson autoregressive models to model the dynamics in the intensity of this process.We use load and meteorological information to model the time variation in the intensity of the process. The models are applied to data from the Australian wholesale electricity market, and a forecasting exercise illustrates both the usefulness of these models and their limitations when attempting to forecast the occurrence of extreme price events.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study addresses the research question: ‘What are the diffusion determinants for extreme weather-proofing technology in the Australian built environment?’ In order to effectively identify diffusion determinants, a synthesis of literature in both technical and management fields was conducted from a system-wide perspective. Review results where then interpreted through an innovation system framework, drawn from innovation systems literature, in order to map the current state of extreme weather-proofing technology diffusion in the Australian built environment industry. Drivers and obstacles to optimal diffusion are presented. Results show the important role to be played by Australian governments in facilitating improved weather proofing technology diffusion. This applies to governments in their various roles, but particularly as regulators, clients/owners and investors in research & development and education. In the role as regulators, findings suggest Australian governments should be encouraging the application of innovative finance options and positive end-user incentives to promote the uptake of weather proofing technology. Additionally, in their role as clients/owners, diffusion can be improved by adjusting building and infrastructure specifications to encourage designers and constructors to incorporate extreme weather proofing technology in new and redeveloped built assets. Finally, results suggest greater investment is required in research and development and improved knowledge sharing across the construction supply chain to further mitigate risks associated with greater incidences of extreme weather events.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In coastal areas, extreme weather events, such as floods and cyclones, can have debilitating effects on the social and economic viability of marine-based industries. In March 2011, the Great Barrier Reef Marine Park Authority implemented an Extreme Weather Response Program, following a period of intense flooding and cyclonic activity between December 2010 and February 2011. In this paper, we discuss the results of a project within the Program, which aimed to: (1) assess the impacts of extreme weather events on regional tourism and commercial fishing industries; and (2) develop and road-test an impact assessment matrix to improve government and industry responses to extreme weather events. Results revealed that extreme weather events both directly and indirectly affected all five of the measured categories, i.e. ecological, personal, social, infrastructure and economic components. The severity of these impacts, combined with their location and the nature of their business, influenced how tourism operators and fishers assessed the impact of the events (low, medium, high or extreme). The impact assessment tool was revised following feedback obtained during stakeholder workshops and may prove useful for managers in responding to potential direct and indirect impacts of future extreme weather events on affected marine industries. © 2013 Planning Institute Australia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Suicide has drawn much attention from both the scientific community and the public. Examining the impact of socio-environmental factors on suicide is essential in developing suicide prevention strategies and interventions, because it will provide health authorities with important information for their decision-making. However, previous studies did not examine the impact of socio-environmental factors on suicide using a spatial analysis approach. The purpose of this study was to identify the patterns of suicide and to examine how socio-environmental factors impact on suicide over time and space at the Local Governmental Area (LGA) level in Queensland. The suicide data between 1999 and 2003 were collected from the Australian Bureau of Statistics (ABS). Socio-environmental variables at the LGA level included climate (rainfall, maximum and minimum temperature), Socioeconomic Indexes for Areas (SEIFA) and demographic variables (proportion of Indigenous population, unemployment rate, proportion of population with low income and low education level). Climate data were obtained from Australian Bureau of Meteorology. SEIFA and demographic variables were acquired from ABS. A series of statistical and geographical information system (GIS) approaches were applied in the analysis. This study included two stages. The first stage used average annual data to view the spatial pattern of suicide and to examine the association between socio-environmental factors and suicide over space. The second stage examined the spatiotemporal pattern of suicide and assessed the socio-environmental determinants of suicide, using more detailed seasonal data. In this research, 2,445 suicide cases were included, with 1,957 males (80.0%) and 488 females (20.0%). In the first stage, we examined the spatial pattern and the determinants of suicide using 5-year aggregated data. Spearman correlations were used to assess associations between variables. Then a Poisson regression model was applied in the multivariable analysis, as the occurrence of suicide is a small probability event and this model fitted the data quite well. Suicide mortality varied across LGAs and was associated with a range of socio-environmental factors. The multivariable analysis showed that maximum temperature was significantly and positively associated with male suicide (relative risk [RR] = 1.03, 95% CI: 1.00 to 1.07). Higher proportion of Indigenous population was accompanied with more suicide in male population (male: RR = 1.02, 95% CI: 1.01 to 1.03). There was a positive association between unemployment rate and suicide in both genders (male: RR = 1.04, 95% CI: 1.02 to 1.06; female: RR = 1.07, 95% CI: 1.00 to 1.16). No significant association was observed for rainfall, minimum temperature, SEIFA, proportion of population with low individual income and low educational attainment. In the second stage of this study, we undertook a preliminary spatiotemporal analysis of suicide using seasonal data. Firstly, we assessed the interrelations between variables. Secondly, a generalised estimating equations (GEE) model was used to examine the socio-environmental impact on suicide over time and space, as this model is well suited to analyze repeated longitudinal data (e.g., seasonal suicide mortality in a certain LGA) and it fitted the data better than other models (e.g., Poisson model). The suicide pattern varied with season and LGA. The north of Queensland had the highest suicide mortality rate in all the seasons, while there was no suicide case occurred in the southwest. Northwest had consistently higher suicide mortality in spring, autumn and winter. In other areas, suicide mortality varied between seasons. This analysis showed that maximum temperature was positively associated with suicide among male population (RR = 1.24, 95% CI: 1.04 to 1.47) and total population (RR = 1.15, 95% CI: 1.00 to 1.32). Higher proportion of Indigenous population was accompanied with more suicide among total population (RR = 1.16, 95% CI: 1.13 to 1.19) and by gender (male: RR = 1.07, 95% CI: 1.01 to 1.13; female: RR = 1.23, 95% CI: 1.03 to 1.48). Unemployment rate was positively associated with total (RR = 1.40, 95% CI: 1.24 to 1.59) and female (RR=1.09, 95% CI: 1.01 to 1.18) suicide. There was also a positive association between proportion of population with low individual income and suicide in total (RR = 1.28, 95% CI: 1.10 to 1.48) and male (RR = 1.45, 95% CI: 1.23 to 1.72) population. Rainfall was only positively associated with suicide in total population (RR = 1.11, 95% CI: 1.04 to 1.19). There was no significant association for rainfall, minimum temperature, SEIFA, proportion of population with low educational attainment. The second stage is the extension of the first stage. Different spatial scales of dataset were used between the two stages (i.e., mean yearly data in the first stage, and seasonal data in the second stage), but the results are generally consistent with each other. Compared with other studies, this research explored the variety of the impact of a wide range of socio-environmental factors on suicide in different geographical units. Maximum temperature, proportion of Indigenous population, unemployment rate and proportion of population with low individual income were among the major determinants of suicide in Queensland. However, the influence from other factors (e.g. socio-culture background, alcohol and drug use) influencing suicide cannot be ignored. An in-depth understanding of these factors is vital in planning and implementing suicide prevention strategies. Five recommendations for future research are derived from this study: (1) It is vital to acquire detailed personal information on each suicide case and relevant information among the population in assessing the key socio-environmental determinants of suicide; (2) Bayesian model could be applied to compare mortality rates and their socio-environmental determinants across LGAs in future research; (3) In the LGAs with warm weather, high proportion of Indigenous population and/or unemployment rate, concerted efforts need to be made to control and prevent suicide and other mental health problems; (4) The current surveillance, forecasting and early warning system needs to be strengthened, to trace the climate and socioeconomic change over time and space and its impact on population health; (5) It is necessary to evaluate and improve the facilities of mental health care, psychological consultation, suicide prevention and control programs; especially in the areas with low socio-economic status, high unemployment rate, extreme weather events and natural disasters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Economic development in Vietnam has led to the spontaneous development of new housing in many parts of Vietnam without consideration of environmental protection, cultural suitability, or resource reduction. The transition of Vietnamese housing into a sustainable industry is both an opportunity and challenge. Vietnam has to satisfy a growing demand for housing while confronting the issues of climate change, extreme weather events, nature conservation and cultural heritage. To that end, model green building guidelines are being developed to facilitate Vietnam’s adoption of sustainable development principles and practices. This paper presents the results of a survey and interviews carried out in Vietnam to ensure that model green guidelines align with the cultural and consumer preferences of the Vietnamese people.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate change is predicted to increase the frequency and severity of extreme weather events which pose significant challenges to the ability of government and other relief agencies to plan for, cope with and respond to disasters. Consequently, it is important that communities in climate sensitive and potential disaster prone areas strengthen their resilience to natural disasters in order to expeditiously recover from potential disruptions and damage caused by disasters. Building self reliance and, particularly in the immediate aftermath of a disaster, can facilitate short-term and long-term community recovery. To build stronger and more resilient communities, it is essential to have a better understanding of their current resilience capabilities by assessing areas of strength, risks and vulnerabilities so that their strengths can be enhanced and the risks and vulnerability can be appropriately addressed and mitigated through capacity building programs. While a number of conceptual frameworks currently exist to assess the resilience level of communities to disasters, they have tended to differ on their emphasis, scope and definition of what constitutes community resilience and how community resilience can be most effectively and accurately assessed. These limitations are attributed to the common approach of viewing community resilience through a mono-disciplinary lens. To overcome this, this paper proposes an integrated conceptual framework that takes into account the complex interplay of environmental, social, governance, infrastructure and economic attributes associated with community resilience. The framework can be operationalised using a range of resilience indicators to suit the nature of a disaster and the specific characteristics of a study region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate change is expected to increase earth’s temperatures and consequently result in more frequent extreme weather events such as cyclones, storms, droughts and floods and rising global sea levels. This phenomenon will affect all assets. This paper discusses the impact of climate change and its consequences on public buildings. Public building management encompasses the building life cycle from planning, procurement, operation, repair and maintenance and building disposal. This paper recommends climate change adaptation strategies to be integrated into public building management. The roles and responsibilities of asset managers and users are discussed within the framework of planning and implementation of public building management and the integration of climate change adaptation strategies. A key point is that climate change can induce premature obsolescence of public buildings and services, which will increase the maintenance and refurbishment costs. This in turn will affect the life cycle cost of the building. Furthermore, a business continuity plan is essential for public building management in the context of disasters. The paper also highlights the significant role that the occupants of public buildings can play in the development and implementation of climate change adaptation strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Between 2008 and 2010, the SettleMEN study followed a group of 233 recently arrived men from refugee backgrounds living in urban and regional Southeast Queensland with the aim of documenting their health and settlement experiences. The study found that overall, these men bring important resources that may help them to cope better with the challenges of settlement: good levels of subjective health status, mental health and wellbeing; good family and social support; and good levels of engagement in tertiary/trade education in Australia. Over time, however, their levels of wellbeing decreased as they experienced barriers to social participation and inclusion within their host community, including: unemployment and difficulties securing good jobs (even for those with tertiary/trade qualifications obtained in Australia), financial stress, difficulties accessing housing, limited interactions with neighbours, and experiences of racism and discrimination. Importantly, although men living in the Toowoomba acknowledged some of the benefits of regional settlement, they faced greater barriers to participation in the labour market, reported lower job satisfaction, and were more likely to experience social exclusion overall. In 2012 method approach and a peer interviewer model, we were able to conduct a follow 141 (61%) of the original 233 SettleMEN participants to document the impact of the January 2011 Queensland floods on their health and settlement. This broadsheet focuses on participants’ degree of exposure to and impact of the floods, their perceptions of safety and security, and their vulnerability and adaptive capacity to extreme weather events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The importance of community resilience to natural disasters is being increasingly recognised. This paper presents an approach for the development of surrogate indicators for comprehensive assessment of community resilience, which is crucial in the context of predicted increase in natural disasters resulting from extreme weather events due to climate change. The use of surrogate indicators is advocated because a comprehensive assessment of community resilience across various thematic areas and associated key areas requires the measurement of a large number of resilience indicators which is not always feasible due to time and resource constraints, To overcome this, researchers tend to use secondary data sources, which are easily available but not always reliable. This highlights the need for surrogate indicators that are easy to measure from reliable primary data sources and are adequate to capture the resilience of a community. Firstly, the paper discusses the two approaches for defining and conceptualising community resilience and the need to account for the complex interrelationships between thematic areas, key areas and resilience indicators and their implications for research. Secondly, a comprehensive framework for the assessment of community resilience is proposed and the difficulties associated with the measurement of overall resilience of the community are discussed. Thirdly, the paper explains a two-step approach to develop surrogate indicators highlighting the necessity and challenges associated with it. Finally, the proposed approach is elaborated with a simple example for better understanding.