97 resultados para EXPRESSION DATA
em Queensland University of Technology - ePrints Archive
Resumo:
We propose a model-based approach to unify clustering and network modeling using time-course gene expression data. Specifically, our approach uses a mixture model to cluster genes. Genes within the same cluster share a similar expression profile. The network is built over cluster-specific expression profiles using state-space models. We discuss the application of our model to simulated data as well as to time-course gene expression data arising from animal models on prostate cancer progression. The latter application shows that with a combined statistical/bioinformatics analyses, we are able to extract gene-to-gene relationships supported by the literature as well as new plausible relationships.
Resumo:
Background Cancer outlier profile analysis (COPA) has proven to be an effective approach to analyzing cancer expression data, leading to the discovery of the TMPRSS2 and ETS family gene fusion events in prostate cancer. However, the original COPA algorithm did not identify down-regulated outliers, and the currently available R package implementing the method is similarly restricted to the analysis of over-expressed outliers. Here we present a modified outlier detection method, mCOPA, which contains refinements to the outlier-detection algorithm, identifies both over- and under-expressed outliers, is freely available, and can be applied to any expression dataset. Results We compare our method to other feature-selection approaches, and demonstrate that mCOPA frequently selects more-informative features than do differential expression or variance-based feature selection approaches, and is able to recover observed clinical subtypes more consistently. We demonstrate the application of mCOPA to prostate cancer expression data, and explore the use of outliers in clustering, pathway analysis, and the identification of tumour suppressors. We analyse the under-expressed outliers to identify known and novel prostate cancer tumour suppressor genes, validating these against data in Oncomine and the Cancer Gene Index. We also demonstrate how a combination of outlier analysis and pathway analysis can identify molecular mechanisms disrupted in individual tumours. Conclusions We demonstrate that mCOPA offers advantages, compared to differential expression or variance, in selecting outlier features, and that the features so selected are better able to assign samples to clinically annotated subtypes. Further, we show that the biology explored by outlier analysis differs from that uncovered in differential expression or variance analysis. mCOPA is an important new tool for the exploration of cancer datasets and the discovery of new cancer subtypes, and can be combined with pathway and functional analysis approaches to discover mechanisms underpinning heterogeneity in cancers
Resumo:
Background Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar expression levels across a subset of conditions. This paper proposes a seed-based algorithm that identifies coherent genes in an exhaustive, but efficient manner. Methods In order to find the biclusters in a gene expression dataset, we exhaustively select combinations of genes and conditions as seeds to create candidate bicluster tables. The tables have two columns: (a) a gene set, and (b) the conditions on which the gene set have dissimilar expression levels to the seed. First, the genes with less than the maximum number of dissimilar conditions are identified and a table of these genes is created. Second, the rows that have the same dissimilar conditions are grouped together. Third, the table is sorted in ascending order based on the number of dissimilar conditions. Finally, beginning with the first row of the table, a test is run repeatedly to determine whether the cardinality of the gene set in the row is greater than the minimum threshold number of genes in a bicluster. If so, a bicluster is outputted and the corresponding row is removed from the table. Repeating this process, all biclusters in the table are systematically identified until the table becomes empty. Conclusions This paper presents a novel biclustering algorithm for the identification of additive biclusters. Since it involves exhaustively testing combinations of genes and conditions, the additive biclusters can be found more readily.
Resumo:
Background: Findings from the phase 3 First-Line ErbituX in lung cancer (FLEX) study showed that the addition of cetuximab to first-line chemotherapy significantly improved overall survival compared with chemotherapy alone (hazard ratio [HR] 0·871, 95% CI 0·762-0·996; p=0·044) in patients with advanced non-small-cell lung cancer (NSCLC). To define patients benefiting most from cetuximab, we studied the association of tumour EGFR expression level with clinical outcome in FLEX study patients. Methods: We used prospectively collected tumour EGFR expression data to generate an immunohistochemistry score for FLEX study patients on a continuous scale of 0-300. We used response data to select an outcome-based discriminatory threshold immunohistochemistry score for EGFR expression of 200. Treatment outcome was analysed in patients with low (immunohistochemistry score <200) and high (≥200) tumour EGFR expression. The primary endpoint in the FLEX study was overall survival. We analysed patients from the FLEX intention-to-treat (ITT) population. The FLEX study is registered with ClinicalTrials.gov, number NCT00148798. Findings: Tumour EGFR immunohistochemistry data were available for 1121 of 1125 (99·6%) patients from the FLEX study ITT population. High EGFR expression was scored for 345 (31%) evaluable patients and low for 776 (69%) patients. For patients in the high EGFR expression group, overall survival was longer in the chemotherapy plus cetuximab group than in the chemotherapy alone group (median 12·0 months [95% CI 10·2-15·2] vs 9·6 months [7·6-10·6]; HR 0·73, 0·58-0·93; p=0·011), with no meaningful increase in side-effects. We recorded no corresponding survival benefit for patients in the low EGFR expression group (median 9·8 months [8·9-12·2] vs 10·3 months [9·2-11·5]; HR 0·99, 0·84-1·16; p=0·88). A treatment interaction test assessing the difference in the HRs for overall survival between the EGFR expression groups suggested a predictive value for EGFR expression (p=0·044). Interpretation: High EGFR expression is a tumour biomarker that can predict survival benefit from the addition of cetuximab to first-line chemotherapy in patients with advanced NSCLC. Assessment of EGFR expression could offer a personalised treatment approach in this setting. Funding: Merck KGaA. © 2012 Elsevier Ltd.
Resumo:
BACKGROUND: Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. METHODS: RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. RESULTS: Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). CONCLUSION: Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue.
Resumo:
OBJECTIVE: This study explored gene expression differences in predicting response to chemoradiotherapy in esophageal cancer. PURPOSE:: A major pathological response to neoadjuvant chemoradiation is observed in about 40% of esophageal cancer patients and is associated with favorable outcomes. However, patients with tumors of similar histology, differentiation, and stage can have vastly different responses to the same neoadjuvant therapy. This dichotomy may be due to differences in the molecular genetic environment of the tumor cells. BACKGROUND DATA: Diagnostic biopsies were obtained from a training cohort of esophageal cancer patients (13), and extracted RNA was hybridized to genome expression microarrays. The resulting gene expression data was verified by qRT-PCR. In a larger, independent validation cohort (27), we examined differential gene expression by qRT-PCR. The ability of differentially-regulated genes to predict response to therapy was assessed in a multivariate leave-one-out cross-validation model. RESULTS: Although 411 genes were differentially expressed between normal and tumor tissue, only 103 genes were altered between responder and non-responder tumor; and 67 genes differentially expressed >2-fold. These included genes previously reported in esophageal cancer and a number of novel genes. In the validation cohort, 8 of 12 selected genes were significantly different between the response groups. In the predictive model, 5 of 8 genes could predict response to therapy with 95% accuracy in a subset (74%) of patients. CONCLUSIONS: This study has identified a gene microarray pattern and a set of genes associated with response to neoadjuvant chemoradiation in esophageal cancer. The potential of these genes as biomarkers of response to treatment warrants further investigation. Copyright © 2009 by Lippincott Williams & Wilkins.
Resumo:
Relative abundance data is common in the life sciences, but appreciation that it needs special analysis and interpretation is scarce. Correlation is popular as a statistical measure of pairwise association but should not be used on data that carry only relative information. Using timecourse yeast gene expression data, we show how correlation of relative abundances can lead to conclusions opposite to those drawn from absolute abundances, and that its value changes when different components are included in the analysis. Once all absolute information has been removed, only a subset of those associations will reliably endure in the remaining relative data, specifically, associations where pairs of values behave proportionally across observations. We propose a new statistic φ to describe the strength of proportionality between two variables and demonstrate how it can be straightforwardly used instead of correlation as the basis of familiar analyses and visualization methods.
Resumo:
Objective: To identify differentially expressed genes in peripheral blood mononuclear cells (PBMCs) from patients with ankylosing spondylitis (AS) compared with healthy individuals. Methods: RNA was extracted from PBMCs collected from 18 patients with active disease and 18 gender-matched and age-matched controls. Expression profiles of these cells were determined using microarray. Candidate genes with differential expressions were confirmed in the same samples using quantitative reverse transcription-PCR (qRT-PCR). These genes were then validated in a different sample cohort of 35 patients with AS and 18 controls by qRT-PCR. Results: Microarray analysis identified 452 genes detected with 485 probes which were differentially expressed between patients with AS and controls. Underexpression of NR4A2, tumour necrosis factor AIP3 (TNFAIP3) and CD69 was confirmed. These genes were further validated in a different sample group in which the patients with AS had a wider range of disease activity. Predictive algorithms were also developed from the expression data using receiver-operating characteristic curves, which demonstrated that the three candidate genes have ∼80% power to predict AS according to their expression levels. Conclusions: The findings show differences in global gene expression patterns between patients with AS and controls, suggesting an immunosuppressive phenotype in the patients. Furthermore, downregulated expression of three immune-related genes was confirmed. These candidate genes were also shown to be strong predictive markers for AS.
Resumo:
Extrapulmonary manifestations constitute 15 to 20% of tuberculosis cases, with lymph node tuberculosis (LNTB) as the most common form of infection. However, diagnosis and treatment advances are hindered by lack of understanding of LNTB biology. To identify host response, Mycobacterium tuberculosis infected lymph nodes from LNTB patients were studied by means of transcriptomics and quantitative proteomics analyses. The selected targets obtained by comparative analyses were validated by quantitative PCR and immunohistochemistry. This approach provided expression data for 8,728 transcripts and 102 proteins, differentially regulated in the infected human lymph node. Enhanced inflammation with upregulation of T-helper1-related genes, combined with marked dysregulation of matrix metalloproteinases, indicates tissue damage due to high immunoactivity at infected niche. This expression signature was accompanied by significant upregulation of an immunoregulatory gene, leukotriene A4 hydrolase, at both transcript and protein levels. Comparative transcriptional analyses revealed LNTB-specific perturbations. In contrast to pulmonary TB-associated increase in lipid metabolism, genes involved in fatty-acid metabolism were found to be downregulated in LNTB suggesting differential lipid metabolic signature. This study investigates the tissue molecular signature of LNTB patients for the first time and presents findings that indicate the possible mechanism of disease pathology through dysregulation of inflammatory and tissue-repair processes.
Resumo:
This paper describes a qualitative study that investigated young adolescents’ self-constructions within the context of online (email) communication. Drawing from dialogical perspectives of self as multiply-situated and complex phenomena, the study focused on the everyday narratives of individual young adolescents interpreted as different “I” voices. With the assumption that computer mediation offers cultural relevance and empowerment to young adolescents, techniques of personal journal writing were used in combination with email as an alternative to face-to-face methods. Twelve participants aged 10 to 14 years were recruited online and by word-of-mouth with an invitation to write freely about their lives over a six month period in a participant-led email journal project. The role of the researcher was to develop a supportive voice of listener/responder that was intended to facilitate the emergence of participants’ own ‘self’ voices within an interactive space for relatively autonomous self-expression. Data as email texts were analysed using a close listening method that synchronised with the theory by revealing multi-layered patterns and shifts of voices in order to give a nuanced understanding of participants’ self and other evaluations. The paper shows that narrative methods used online and in concert with dialogical concepts have potential to heighten self-reflection and strengthen agency as a means to access rich and nuanced data from young adolescent individuals. The study’s findings contribute to a growing interest in the use of dialogical concepts to explore the ways people engage in active meaning-making while embedded in their specific social and cultural environments.
Resumo:
Objective: To perform a 1-stage meta-analysis of genome-wide association studies (GWAS) of multiple sclerosis (MS) susceptibility and to explore functional consequences of new susceptibility loci. Methods: We synthesized 7 MS GWAS. Each data set was imputed using HapMap phase II, and a per single nucleotide polymorphism (SNP) meta-analysis was performed across the 7 data sets. We explored RNA expression data using a quantitative trait analysis in peripheral blood mononuclear cells (PBMCs) of 228 subjects with demyelinating disease. Results: We meta-analyzed 2,529,394 unique SNPs in 5,545 cases and 12,153 controls. We identified 3 novel susceptibility alleles: rs170934T at 3p24.1 (odds ratio [OR], 1.17; p ¼ 1.6 � 10�8) near EOMES, rs2150702G in the second intron of MLANA on chromosome 9p24.1 (OR, 1.16; p ¼ 3.3 � 10�8), and rs6718520A in an intergenic region on chromosome 2p21, with THADA as the nearest flanking gene (OR, 1.17; p ¼ 3.4 � 10�8). The 3 new loci do not have a strong cis effect on RNA expression in PBMCs. Ten other susceptibility loci had a suggestive p < 1 � 10�6, some of these loci have evidence of association in other inflammatory diseases (ie, IL12B, TAGAP, PLEK, and ZMIZ1). Interpretation: We have performed a meta-analysis of GWAS in MS that more than doubles the size of previous gene discovery efforts and highlights 3 novel MS susceptibility loci. These and additional loci with suggestive evidence of association are excellent candidates for further investigations to refine and validate their role in the genetic architecture of MS.
Resumo:
Previous studies in our laboratory have shown association of nuclear receptor expression and histological breast cancer grade. To further investigate these findings, it was the objective of this study to determine if expression levels of the estrogen alpha, estrogen beta and androgen nuclear receptor genes varied in different breast cancer grades. RNA extracted from paraffin embedded archival breast tumour tissue was converted into cDNA and cDNA underwent PCR to enable quantitation of mRNA expression. Expression data was normalised against the 18S ribosomal gene multiplex and analysed using ANOVA. Analysis indicated a significant alteration of expression for the androgen receptor in different cancer grades (P=0.014), as well as in tissues that no longer possess estrogen receptor alpha proteins (P=0.025). However, expression of estrogen receptors alpha and beta did not vary significantly with cancer grade (P=0.057 and 0.622, respectively). Also, the expression of estrogen receptor alpha or beta did not change, regardless of the presence of estrogen receptor alpha protein in the tissue (P=0.794 and 0.716, respectively). Post-hoc tests indicate that the expression of the androgen receptor is increased in estrogen receptor negative tissue as well as in grade 2 and grade 3 tumours, compared to control tissue. This increased expression in late stage breast tumours may have implications to the treatment of breast tumours, particularly those lacking expression of other nuclear receptor genes.
Resumo:
Background MicroRNAs (miRNAs) are known to play an important role in cancer development by post-transcriptionally affecting the expression of critical genes. The aims of this study were two-fold: (i) to develop a robust method to isolate miRNAs from small volumes of saliva and (ii) to develop a panel of saliva-based diagnostic biomarkers for the detection of head and neck squamous cell carcinoma (HNSCC). Methods Five differentially expressed miRNAs were selected from miScript™ miRNA microarray data generated using saliva from five HNSCC patients and five healthy controls. Their differential expression was subsequently confirmed by RT-qPCR using saliva samples from healthy controls (n = 56) and HNSCC patients (n = 56). These samples were divided into two different cohorts, i.e., a first confirmatory cohort (n = 21) and a second independent validation cohort (n = 35), to narrow down the miRNA diagnostic panel to three miRNAs: miR-9, miR-134 and miR-191. This diagnostic panel was independently validated using HNSCC miRNA expression data from The Cancer Genome Atlas (TCGA), encompassing 334 tumours and 39 adjacent normal tissues. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic capacity of the panel. Results On average 60 ng/μL miRNA was isolated from 200 μL of saliva. Overall a good correlation was observed between the microarray data and the RT-qPCR data. We found that miR-9 (P <0.0001), miR-134 (P <0.0001) and miR-191 (P <0.001) were differentially expressed between saliva from HNSCC patients and healthy controls, and that these miRNAs provided a good discriminative capacity with area under the curve (AUC) values of 0.85 (P <0.0001), 0.74 (P < 0.001) and 0.98 (P < 0.0001), respectively. In addition, we found that the salivary miRNA data showed a good correlation with the TCGA miRNA data, thereby providing an independent validation. Conclusions We show that we have developed a reliable method to isolate miRNAs from small volumes of saliva, and that the saliva-derived miRNAs miR-9, miR-134 and miR-191 may serve as novel biomarkers to reliably detect HNSCC. © 2014 International Society for Cellular Oncology.