151 resultados para ETCHED IMPLANT SURFACES
em Queensland University of Technology - ePrints Archive
Resumo:
Background: Implant surface micro-roughness and hydrophilicity are known to improve the osteogenic differentiation potential of osteoprogenitor cells. This study was aimed to determine whether topographically and chemically modified titanium implant surfaces stimulate an initial osteogenic response in osteoprogenitor cells, which leads to their improved osteogenesis. ----- ----- Methods: Statistical analysis of microarray gene expression profiling data available from studies (at 72 hours) on sand-blasted, large grit acid etched (SLA) titanium surfaces was performed. Subsequently, human osteoprogenitor cells were cultured on SLActive (hydrophilic SLA), SLA and polished titanium surfaces for 24 hours, 3 days and 7 days. The expression of BMP2, BMP6, BMP2K, SP1, ACVR1, FZD6, WNT5A, PDLIM7, ITGB1, ITGA2, OCN, OPN, ALP and RUNX2 were studied using qPCR. ----- ----- Results: Several functional clusters related to osteogenesis were highlighted when genes showing statistically significant differences (from microarray data at 72 hours) in expression on SLA surface (compared with control surface) were analysed using DAVID (online tool). This indicates that differentiation begins very early in response to modified titanium surfaces. At 24 hours, ACVR1 (BMP pathway), FZD6 (Wnt pathway) and SP1 (TGF-β pathway) were significantly up-regulated in cultures on the SLActive surface compared to the other surfaces. WNT5A and ITGB1 also showed higher expression on the modified surfaces. Gene expression patterns on Day 3 and Day 7 did not reveal any significant differences.----- ----- Conclusion: These results suggest that the initial molecular response of osteoprogenitor cells to modified titanium surfaces may be responsible for an improved osteogenic response via the BMP and Wnt signalling pathways.
Resumo:
Topographically and chemically modified titanium implants are recognized to have improved osteogenic properties; however, the molecular regulation of this process remains unknown. This study aimed to determine the microRNA profile and the potential regulation of osteogenic differentiation following early exposure of osteoprogenitor cells to sand-blasted, large-grit acid-etched (SLA) and hydrophilic SLA (modSLA) surfaces. Firstly, the osteogenic characteristics of the primary osteoprogenitor cells were confirmed using ALP activity and Alizarin Red S staining. The effect of smooth (SMO), SLA and modSLA surfaces on the TGF-β/BMP (BMP2, BMP6, ACVR1) and non-canonical WNT/Ca2+ (WNT5A, FZD6) pathways, as well as the integrins ITGB1 and ITGA2, was determined. It was revealed that the modified titanium surfaces could induce the activation of TGF-β/BMP and non-canonical WNT/Ca2+ signaling genes. The expression pattern of microRNAs (miRNAs) related to cell differentiation was evaluated. Statistical analysis of the differentially regulated miRNAs indicated that 35 and 32 miRNAs were down-regulated on the modSLA and SLA surfaces respectively, when compared with the smooth surface (SMO). Thirty-one miRNAs that were down-regulated were common to both modSLA and SLA. There were 10 miRNAs up-regulated on modSLA and nine on SLA surfaces, amongst which eight were the same as observed on modSLA. TargetScan predictions for the down-regulated miRNAs revealed genes of the TGF-β/BMP and non-canonical Ca2+ pathways as targets. This study demonstrated that modified titanium implant surfaces induce differential regulation of miRNAs, which potentially regulate the TGF-β/BMP and WNT/Ca2+ pathways during osteogenic differentiation on modified titanium implant surfaces.
Resumo:
This project aimed at understanding the molecular mechanisms involved in the superior integration of micro-roughened titanium implant surfaces with the surrounding bone, when compared with their smooth surfaces. It involved studying the role of microRNAs and cell signaling pathways in the molecular regulation of bone cells on topographically modified titanium dental implants. The findings suggest a highly regulated microRNA-mediated control of molecular mechanisms during the process of bone formation that may be responsible for the superior osseointegration properties on micro-roughened titanium implant surfaces and indicate the possibility of using microRNA modulators to enhance osseointegration in clinically demanding circumstances.
Resumo:
Objectives Titanium implant surfaces with modified topographies have improved osteogenic properties in vivo. However, the molecular mechanisms remain obscure. This study explored the signaling pathways responsible for the pro-osteogenic properties of micro-roughened (SLA) and chemically/nanostructurally (modSLA) modified titanium surfaces on human alveolar bone-derived osteoprogenitor cells (BCs) in vitro. Materials and methods The activation of stem cell signaling pathways (TGFβ/BMP, Wnt, FGF, Hedgehog, Notch) was investigated following early exposure (24 and 72 h) of BCs to SLA and modSLA surfaces in the absence of osteogenic cell culture supplements. Results Key regulatory genes from the TGFβ/BMP (TGFBR2, BMPR2, BMPR1B, ACVR1B, SMAD1, SMAD5), Wnt (Wnt/β-catenin and Wnt/Ca2+) (FZD1, FZD3, FZD5, LRP5, NFATC1, NFATC2, NFATC4, PYGO2, LEF1) and Notch (NOTCH1, NOTCH2, NOTCH4, PSEN1, PSEN2, PSENEN) pathways were upregulated on the modified surfaces. These findings correlated with a higher expression of osteogenic markers bone sialoprotein (IBSP) and osteocalcin (BGLAP), and bone differentiation factors BMP2, BMP6, and GDF15, as observed on the modified surfaces. Conclusions These findings demonstrate that the activation of the pro-osteogenic cell signaling pathways by modSLA and SLA surfaces leads to enhanced osteogenic differentiation as evidenced after 7 and 14 days culture in osteogenic media and provides a mechanistic insight into the superior osseointegration on the modified surfaces observed in vivo.
Resumo:
The first step in bone healing is forming a blood clot at injured bones. During bone implantation, biomaterials unavoidably come into direct contact with blood, leading to a blood clot formation on its surface prior to bone regeneration. Despite both situations being similar in forming a blood clot at the defect site, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Dental implantology has long demonstrated that the fibrin structure and cellular content of a peri-implant clot can greatly affect osteoconduction and de novo bone formation on implant surfaces. This paper reviews the formation of a blood clot during bone healing in related to the use of platelet-rich plasma (PRP) gels. It is implicated that PRP gels are dramatically altered from a normal clot in healing, resulting conflicting effect on bone regeneration. These results indicate that the effect of clots on bone regeneration depends on how the clots are formed. Factors that influence blood clot structure and properties in related to bone healing are also highlighted. Such knowledge is essential for developing strategies to optimally control blood clot formation, which ultimately alter the healing microenvironment of bone. Of particular interest are modification of surface chemistry of biomaterials, which displays functional groups at varied composition for the purpose of tailoring blood coagulation activation, resultant clot fibrin architecture, rigidity, susceptibility to lysis, and growth factor release. This opens new scope of in situ blood clot modification as a promising approach in accelerating and controlling bone regeneration.
Resumo:
Injured bone initiates the healing process by forming a blood clot at the damaged site. However, in severe damage, synthetic bone implants are used to provide structural integrity and restore the healing process. The implant unavoidably comes into direct contact with whole blood, leading to a blood clot formation on its surface. Despite this, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Surface chemistry of a biomaterial is a crucial property in mediating blood-biomaterials interactions, and hence the formation of the resultant blood clot. Surfaces presenting mixtures of functional groups carboxyl (–COOH) and methyl (–CH3) have been shown to enhance platelet response and coagulation activation, leading to the formation of fibrin fibres. In addition, it has been shown that varying the compositions of these functional groups and the length of alkyl groups further modulate the immune complement response. In this study, we hypothesised that a biomaterial surface with mixture of –COOH/–CH3(methyl), –CH2CH3 (ethyl) or –(CH2)3CH3 (butyl) groups at different ratios would modulate blood coagulation and complement activation, and eventually tailor the structural and functional properties of the blood clot formed on the surface, which subsequently impacts new bone formation. Firstly, we synthesised a series of materials composed of acrylic acid (AA), and methyl (MMA), ethyl (EMA) or butyl methacrylates (BMA) at different ratios and coated on the inner surfaces of incubation vials. Our surface analysis showed that the amount of –COOH groups on the surface coatings was lower than the ratios of AA prepared in the materials even though the surface content of –COOH groups increased with increasing in AA ratios. It was indicated that the surface hydrophobicity increased with increasing alkyl chain length: –CH 3 > –CH2CH3 > –(CH2)3CH3, and decreased with increasing –COOH groups. No significant differences in surface hydrophobicity was found on surfaces with –CH3 and –CH2CH3 groups in the presence of –COOH groups. The material coating was as smooth as uncoated glass and without any major flaws. The average roughness of material-coated surface (3.99 ± 0.54 nm) was slightly higher than that of uncoated glass surface (2.22 ± 0.29 nm). However, no significant differences in surface average roughness was found among surfaces with the same functionalities at different –COOH ratios nor among surfaces with different alkyl groups but the same –COOH ratios. These suggested that the surface functional groups and their compositions had a combined effect on modulating surface hydrophobicity but not surface roughness. The second part of our study was to investigate the effect of surface functional groups and their compositions on blood cascade activation and structural properties of the formed clots. It was found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/–CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of activation. Moreover, all material-coated surfaces markedly reduced the complement activation compared to uncoated glass surfaces, and the pattern of complement activation was entirely similar to that of surface-induced coagulation, suggesting there is an interaction between two cascades. The clots formed on material-coated surfaces had thicker fibrin with a tighter network at the exterior when compared to uncoated glass surfaces. Compared to the clot exteriors, thicker fibrins with a loose network were found in clot interiors. Coated surfaces resulted in more rigid clots with a significantly slower fibrinolysis after 1 h of lysis when compared to uncoated glass surfaces. Significant differences in fibrinolysis after 1 h of lysis among clots on material-coated surfaces correlated well with the differences in fibrin thickness and density at clot exterior. In addition, more growth factors were released during clot formation than during clot lysis. From an intact clot, there was a correlation between the amount of PDGF-AB release and fibrin density. Highest amount of PDGF-AB was released from clots formed on surfaces with 40% –COOH/60% –CH 3 (i.e. 65MMA). During clot lysis, the release of PDGF-AB also correlated with the fibrinolytic rate while the release of TGF-â1 was influenced by the fibrin thickness. This suggested that different clot structures led to different release profiles of growth factors in clot intact and degrading stages. We further validated whether the clots formed on material-coatings provide the microenvironment for improved bone healing by using a rabbit femoral defect model. In this pilot study, the implantation of clots formed on 65MMA coatings significantly increased new bone formation with enhanced chondrogenesis, osteoblasts activity and vascularisation, but decreased inflammatory macrophage number at the defects after 4 weeks when compared to commercial bone grafts ChronOSTM â-TCP granules. Empty defects were observed when blood clot formation was inhibited. In summary, our study demonstrated that surface functional groups and their relative ratios on material coatings synergistically modulate activation of blood cascades, resultant fibrin architecture, rigidity, susceptibility to fibrinolysis as well as growth factor release of the formed clots, which ultimately alter the healing microenvironment of injured bones.
Resumo:
Strategies that confine antibacterial and/or antifouling property to the surface of the implant, by modifying the surface chemistry and morphology or by encapsulating the material in an antibiotic-loaded coating, are most promising as they do not alter bulk integrity of the material. Among them, plasma-assisted modification and catechol chemistry stand out for their ability to modify a wide range of substrates. By controlling processing parameters, plasma environment can be used for surface nano structuring, chemical activation, and deposition of biologically active and passive coatings. Catechol chemistry can be used for material-independent, highly-controlled surface immobilisation of active molecules and fabrication of biodegradable drug-loaded hydrogel coatings. In this article, we comprehensively review the role plasma-assisted processing and catechol chemistry can play in combating bacterial colonisation on medically relevant coatings, and how these strategies can be coupled with the use of natural antimicrobial agents to produce synthetic antibiotic-free antibacterial surfaces.
Resumo:
This paper is concerned with the surface profiles of a strip after rigid bodies with serrated (saw-teeth) surfaces indent the strip and are subsequently removed. Plane-strain conditions are assumed. This has application in roughness transfer of final metal forming process. The effects of the semi-angle of the teeth, the depth of indentation and the friction on the contact surface on the profile are considered.
Resumo:
Growth rods are commonly used for the treatment of scoliosis in the immature spine. Many variations have been proposed but breakage of implants is a common problem. Growth rod insertion commonly involves large exposures at initial insertion followed by multiple smaller procedures for lengthening. We present our early experiences using a percutaneous technique of insertion of a new titanium mobile bearing implant (Medtronic Inc). The implant allows some rotatory motion in the middle of the construct thus reducing construct stresses and thus possibly reducing rod breakage risk. Based on this small initial series with 12 months follow-up, percutaneous insertion of growth rods using the new implant is a safe and reliable technique although the infection rate in our sample was of note. This may be related to the titanium wear and inflammation seen in the soft tissues at time of operation and visualised on histology. No implants have required removal due to infection, and all infections were treated with debridement at next lengthening and suppressive antibiotics. Propionibacterium is one of the commonest infections seen with spinal implants and sometimes does not respond to simple antibiotic suppression. The technique allows preservation of the soft tissues until definitive fusion is needed and may lead to a decrease in hospital stay. The implant is low profile and seems to offer advantages over other systems on the market. Further follow up is needed to look at longer term outcomes with this new implant type.