947 resultados para EPIDEMIC MODEL
em Queensland University of Technology - ePrints Archive
Resumo:
Although there was substantial research into the occupational health and safety sector over the past forty years, this generally focused on statistical analyses of data related to costs and/or fatalities and injuries. There is a lack of mathematical modelling of the interactions between workers and the resulting safety dynamics of the workplace. There is also little work investigating the potential impact of different safety intervention programs prior to their implementation. In this article, we present a fundamental, differential equation-based model of workplace safety that treats worker safety habits similarly to an infectious disease in an epidemic model. Analytical results for the model, derived via phase plane and stability analysis, are discussed. The model is coupled with a model of a generic safety strategy aimed at minimising unsafe work habits, to produce an optimal control problem. The optimal control model is solved using the forward-backward sweep numerical scheme implemented in Matlab.
Resumo:
We consider Cooperative Intrusion Detection System (CIDS) which is a distributed AIS-based (Artificial Immune System) IDS where nodes collaborate over a peer-to-peer overlay network. The AIS uses the negative selection algorithm for the selection of detectors (e.g., vectors of features such as CPU utilization, memory usage and network activity). For better detection performance, selection of all possible detectors for a node is desirable but it may not be feasible due to storage and computational overheads. Limiting the number of detectors on the other hand comes with the danger of missing attacks. We present a scheme for the controlled and decentralized division of detector sets where each IDS is assigned to a region of the feature space. We investigate the trade-off between scalability and robustness of detector sets. We address the problem of self-organization in CIDS so that each node generates a distinct set of the detectors to maximize the coverage of the feature space while pairs of nodes exchange their detector sets to provide a controlled level of redundancy. Our contribution is twofold. First, we use Symmetric Balanced Incomplete Block Design, Generalized Quadrangles and Ramanujan Expander Graph based deterministic techniques from combinatorial design theory and graph theory to decide how many and which detectors are exchanged between which pair of IDS nodes. Second, we use a classical epidemic model (SIR model) to show how properties from deterministic techniques can help us to reduce the attack spread rate.
Resumo:
Influenza is associated with substantial disease burden [ 1]. Development of a climate-based early warning system for in fluenza epidemics has been recommended given the signi fi - cant association between climate variability and influenza activity [2]. Brisbane is a subtropical city in Australia and offers free in fluenza vaccines to residents aged ≥65 years considering their high risks in developing life-threatening complications, especially for in fluenza A predominant seasons. Hong Kong is an international subtropical city in Eastern Asia and plays a crucial role in global infectious diseases transmission dynamics via the international air transportation network [3, 4]. We hypothesized that Hong Kong in fluenza surveillance data could provide a signal for in fluenza epidemics in Brisbane [ 4]. This study aims to develop an epidemic forecasting model for influenza A in Brisbane elders, by combining climate variability and Hong Kong in fluenza A surveillance data. Weekly numbers of laboratoryconfirmed influenza A positive isolates for people aged ≥65 years from 2004 to 2009 were obtained for Brisbane from Queensland Health, Australia, and for Hong Kong from Queen Mary Hospital (QMH). QMH is the largest public hospital located in Hong Kong Island, and in fluenza surveillance data from this hospital have been demonstrated to be representative for influenza circulation in the entirety of Hong Kong [ 5]. The Brisbane in fluenza A epidemics occurred during July –September, whereas the Hong Kong in fluenza A epidemics occurred during February –March and May –August.
Resumo:
Background It remains unclear over whether it is possible to develop an epidemic forecasting model for transmission of dengue fever in Queensland, Australia. Objectives To examine the potential impact of El Niño/Southern Oscillation on the transmission of dengue fever in Queensland, Australia and explore the possibility of developing a forecast model of dengue fever. Methods Data on the Southern Oscillation Index (SOI), an indicator of El Niño/Southern Oscillation activity, were obtained from the Australian Bureau of Meteorology. Numbers of dengue fever cases notified and the numbers of postcode areas with dengue fever cases between January 1993 and December 2005 were obtained from the Queensland Health and relevant population data were obtained from the Australia Bureau of Statistics. A multivariate Seasonal Auto-regressive Integrated Moving Average model was developed and validated by dividing the data file into two datasets: the data from January 1993 to December 2003 were used to construct a model and those from January 2004 to December 2005 were used to validate it. Results A decrease in the average SOI (ie, warmer conditions) during the preceding 3–12 months was significantly associated with an increase in the monthly numbers of postcode areas with dengue fever cases (β=−0.038; p = 0.019). Predicted values from the Seasonal Auto-regressive Integrated Moving Average model were consistent with the observed values in the validation dataset (root-mean-square percentage error: 1.93%). Conclusions Climate variability is directly and/or indirectly associated with dengue transmission and the development of an SOI-based epidemic forecasting system is possible for dengue fever in Queensland, Australia.
Resumo:
Background: It remains unclear whether it is possible to develop a spatiotemporal epidemic prediction model for cryptosporidiosis disease. This paper examined the impact of social economic and weather factors on cryptosporidiosis and explored the possibility of developing such a model using social economic and weather data in Queensland, Australia. ----- ----- Methods: Data on weather variables, notified cryptosporidiosis cases and social economic factors in Queensland were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Three-stage spatiotemporal classification and regression tree (CART) models were developed to examine the association between social economic and weather factors and monthly incidence of cryptosporidiosis in Queensland, Australia. The spatiotemporal CART model was used for predicting the outbreak of cryptosporidiosis in Queensland, Australia. ----- ----- Results: The results of the classification tree model (with incidence rates defined as binary presence/absence) showed that there was an 87% chance of an occurrence of cryptosporidiosis in a local government area (LGA) if the socio-economic index for the area (SEIFA) exceeded 1021, while the results of regression tree model (based on non-zero incidence rates) show when SEIFA was between 892 and 945, and temperature exceeded 32°C, the relative risk (RR) of cryptosporidiosis was 3.9 (mean morbidity: 390.6/100,000, standard deviation (SD): 310.5), compared to monthly average incidence of cryptosporidiosis. When SEIFA was less than 892 the RR of cryptosporidiosis was 4.3 (mean morbidity: 426.8/100,000, SD: 319.2). A prediction map for the cryptosporidiosis outbreak was made according to the outputs of spatiotemporal CART models. ----- ----- Conclusions: The results of this study suggest that spatiotemporal CART models based on social economic and weather variables can be used for predicting the outbreak of cryptosporidiosis in Queensland, Australia.
Resumo:
Background: Mass migration to Asian cities is a defining phenomenon of the present age, as hundreds of millions of people move from rural areas or between cities in search of economic prosperity. Although many do prosper, large numbers of people experience significant social disadvantage. This is especially the case among poorly educated, migrant unskilled unregistered male laborers who do much of the manual work throughout the cities. These men are at significant risk for many health problems, including HIV infection. However, to date there has been little research in developing countries to explain the determinants of this risk, and thereby to suggest feasible preventive strategies. Objectives and Methodology: Using combined qualitative and quantitative methods, the aim of this study was to explore the social contexts that affect health vulnerabilities and to develop conceptual models to predict risk behaviors for HIV [illicit drug use, unsafe sex, and non-testing for HIV] among male street laborers in Hanoi, Vietnam. Qualitative Research: Sixteen qualitative interviews revealed a complex variety of life experiences, beliefs and knowledge deficits that render these mostly poor and minimally educated men vulnerable to health problems including HIV infection. This study formed a conceptual model of numerous stressors related to migrants’ life experiences in urban space, including physical, financial and social factors. A wide range of coping strategies were adopted to deal with stressors – including problem-focused coping (PFC) and emotion-focused coping (EFC), pro-social and anti-social, active and passive. These men reported difficulty in coping with stressors because they had weak social networks and lacked support from formal systems. A second conceptual model emerged that highlighted equivalent influences of individual psychological factors, social integration, social barriers, and accessibility regarding drug use and sexual risk behavior. Psychological dimensions such as tedium, distress, fatalism and revenge, were important. There were strong effects of collective decision-making and fear of social isolation on shaping risk behaviors. These exploratory qualitative interviews helped to develop a culturally appropriate instrument for the quantitative survey and informed theoretical models of the factors that affect risk behaviors for HIV infection. Quantitative Research: The Information-Motivation-Behavioral Skills (IMB) model was adopted as the theoretical framework for a large-scale survey. It was modified to suit the contexts of these Vietnamese men. By doing a social mapping technique, 450 male street laborers were interviewed in Hanoi, Vietnam. The survey revealed that the risk of acquiring and transmitting HIV was high among these men. One in every 12 men reported homosexual or bisexual behavior. These men on average had 3 partners within the preceding year, and condom use was inconsistent. One third had had sex with commercial sex workers (CSW) and only 30% of them reported condom use; 17% used illicit drugs sometimes, with 66.7% of them frequently sharing injecting equipment with peers. Despite the risks, only 19.8% of men had been tested for HIV during the previous 12 months. These men have limited HIV knowledge and only moderate motivation and perceived behavioral skills for protective behavior. Although rural-to-urban migration was not associated with sexual risk behavior, three elements of the IMB model and depression associated with the process of mobility were significant determinants of sexual behavior. A modified model that incorporated IMB elements and psychosocial stress was found to be a better fit than the original IMB model alone in predicting protected sex behavior among the men. Men who were less psychologically and socially stressed, better informed and motivated for HIV prevention were more likely to demonstrate behavioral skills, and in turn were more likely to engage in safer sexual behavior. With regard to drug use, although the conventional model accounted for slightly less variance than the modified IMB model, data were of better fit for the conventional model. Multivariate analyses revealed that men who originated from urban areas, those who were homo- or bi-sexually identified and had better knowledge and skills for HIV prevention were more likely to access HIV testing, while men who had more sexual partners and those who did not use a condom for sex with CSW were least likely to take a test. The modified IMB model provided a better fit than the conventional model, as it explained a greater variance in HIV testing. Conclusions and Implications: This research helps to highlight a potential hidden HIV epidemic among street male, unskilled, unregistered laborers. This group has multiple vulnerabilities to HIV infection through both their partners and peers. However, most do not know their HIV status and have limited knowledge about preventing infection. This is the first application of a modified IMB model of risk behaviors for HIV such as drug use, condom use, and uptake of HIV testing to research with male street laborers in urban settings. The study demonstrated that while the extended IMB model had better fit than the conventional version in explaining the behaviors of safe sex and HIV testing, it was not so for drug use. The results provide interesting directions for future research and suggest ways to effectively design intervention strategies. The findings should shed light on culturally appropriate HIV preventive education and support programs for these men. As Vietnam has much in common with other developing countries in Southeast Asia, this research provides evidence for policy and practice that may be useful for public health systems in similar countries.
Resumo:
We consider a hybrid model, created by coupling a continuum and an agent-based model of infectious disease. The framework of the hybrid model provides a mechanism to study the spread of infection at both the individual and population levels. This approach captures the stochastic spatial heterogeneity at the individual level, which is directly related to deterministic population level properties. This facilitates the study of spatial aspects of the epidemic process. A spatial analysis, involving counting the number of infectious agents in equally sized bins, reveals when the spatial domain is nonhomogeneous.
Resumo:
Background: Discussion is currently taking place among international HIV/AIDS groups around increasing HIV testing and initiating earlier use of antiretroviral therapy (ART) among people diagnosed with HIV as a method to reduce the spread of HIV. In this study, we explore the expected epidemiological impact of this strategy in a small population in which HIV transmission is predominantly confined to men who have sex with men (MSM). Methods: A deterministic mathematical transmission model was constructed to investigate the impacts of strategies that increase testing and treatment rates, and their likely potential to mitigate HIV epidemics among MSM. Our novel model distinguishes men in the population who are more easily accessible to prevention campaigns through engagement with the gay community from men who are not. This model is applied to the population of MSM in South Australia. Results: Our model-based findings suggest that increasing testing rates alone will have minimal impact on reducing the expected number of infections compared to current conditions. However, in combination with increases in treatment coverage, this strategy could lead to a 59–68% reduction in the number of HIV infections over the next 5 years. Targeting men who are socially engaged with the gay community would result in the majority of potential reductions in incidence, with only minor improvements possible by reaching all other MSM. Conclusions: Investing in strategies that will achieve higher coverage and earlier initiation of treatment to reduce infectiousness of HIV-infected individuals could be an effective strategy for reducing incidence in a population of MSM.
Resumo:
Understanding the dynamics of disease spread is essential in contexts such as estimating load on medical services, as well as risk assessment and interven- tion policies against large-scale epidemic outbreaks. However, most of the information is available after the outbreak itself, and preemptive assessment is far from trivial. Here, we report on an agent-based model developed to investigate such epidemic events in a stylised urban environment. For most diseases, infection of a new individual may occur from casual contact in crowds as well as from repeated interactions with social partners such as work colleagues or family members. Our model therefore accounts for these two phenomena. Given the scale of the system, efficient parallel computing is required. In this presentation, we focus on aspects related to paralllelisation for large networks generation and massively multi-agent simulations.
Resumo:
In this paper, we investigate the effect of mobility constraints on epidemic broad-cast mechanisms in DTNs (Delay-Tolerant Networks). Major factors affecting epidemic broadcast performances are its forwarding algorithm and node mobility. The impact of forwarding algorithm and node mobility on epidemic broadcast mechanisms has been actively studied in the literature, but those studies use generally unconstrained mobility models. The objective of this paper is therefore to quantitatively investigate the effect of mobility constraints on epidemic broadcast mechanisms. We evaluate the performances of P-BCAST (PUSH-based BroadCast), SA-BCAST (Self-Adaptive BroadCast), and HP-BCAST (History-based P-BCAST) with a random waypoint mobility model with mobility constraints.
Resumo:
In this paper, we investigate the effect of mobility constraints on epidemic broadcast mechanisms in DTNs (Delay-Tolerant Networks). Major factors affecting epidemic broadcast performances are its forwarding algorithm and node mobility. The impact of forwarding algorithm and node mobility on epidemic broadcast mechanisms has been actively studied in the literature, but those studies generally use unconstrained mobility models. The objective of this paper is therefore to quantitatively investigate the effect of mobility constraints on epidemic broadcast mechanisms. We evaluate the performances of three classes of epidemic broadcast mechanisms - P-BCAST (PUSH-based BroadCast), SA-BCAST (Self-Adaptive BroadCast), and HP-BCAST (History-based P-BCAST) - with a random waypoint mobility model with mobility constraints. Our finding includes that the existence of mobility constraints significantly improves the reach ability and dissemination speed of epidemic broadcast mechanisms while degrading their efficiency.
Resumo:
Background A pandemic strain of influenza A spread rapidly around the world in 2009, now referred to as pandemic (H1N1) 2009. This study aimed to examine the spatiotemporal variation in the transmission rate of pandemic (H1N1) 2009 associated with changes in local socio-environmental conditions from May 7–December 31, 2009, at a postal area level in Queensland, Australia. Method We used the data on laboratory-confirmed H1N1 cases to examine the spatiotemporal dynamics of transmission using a flexible Bayesian, space–time, Susceptible-Infected-Recovered (SIR) modelling approach. The model incorporated parameters describing spatiotemporal variation in H1N1 infection and local socio-environmental factors. Results The weekly transmission rate of pandemic (H1N1) 2009 was negatively associated with the weekly area-mean maximum temperature at a lag of 1 week (LMXT) (posterior mean: −0.341; 95% credible interval (CI): −0.370–−0.311) and the socio-economic index for area (SEIFA) (posterior mean: −0.003; 95% CI: −0.004–−0.001), and was positively associated with the product of LMXT and the weekly area-mean vapour pressure at a lag of 1 week (LVAP) (posterior mean: 0.008; 95% CI: 0.007–0.009). There was substantial spatiotemporal variation in transmission rate of pandemic (H1N1) 2009 across Queensland over the epidemic period. High random effects of estimated transmission rates were apparent in remote areas and some postal areas with higher proportion of indigenous populations and smaller overall populations. Conclusions Local SEIFA and local atmospheric conditions were associated with the transmission rate of pandemic (H1N1) 2009. The more populated regions displayed consistent and synchronized epidemics with low average transmission rates. The less populated regions had high average transmission rates with more variations during the H1N1 epidemic period.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.