3 resultados para ENTROPIES

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interpreting acoustic recordings of the natural environment is an increasingly important technique for ecologists wishing to monitor terrestrial ecosystems. Technological advances make it possible to accumulate many more recordings than can be listened to or interpreted, thereby necessitating automated assistance to identify elements in the soundscape. In this paper we examine the problem of estimating avian species richness by sampling from very long acoustic recordings. We work with data recorded under natural conditions and with all the attendant problems of undefined and unconstrained acoustic content (such as wind, rain, traffic, etc.) which can mask content of interest (in our case, bird calls). We describe 14 acoustic indices calculated at one minute resolution for the duration of a 24 hour recording. An acoustic index is a statistic that summarizes some aspect of the structure and distribution of acoustic energy and information in a recording. Some of the indices we calculate are standard (e.g. signal-to-noise ratio), some have been reported useful for the detection of bioacoustic activity (e.g. temporal and spectral entropies) and some are directed to avian sources (spectral persistence of whistles). We rank the one minute segments of a 24 hour recording in descending order according to an "acoustic richness" score which is derived from a single index or a weighted combination of two or more. We describe combinations of indices which lead to more efficient estimates of species richness than random sampling from the same recording, where efficiency is defined as total species identified for given listening effort. Using random sampling, we achieve a 53% increase in species recognized over traditional field surveys and an increase of 87% using combinations of indices to direct the sampling. We also demonstrate how combinations of the same indices can be used to detect long duration acoustic events (such as heavy rain and cicada chorus) and to construct long duration (24 h) spectrograms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.