619 resultados para ENGINEERING, INDUSTRIAL
em Queensland University of Technology - ePrints Archive
Resumo:
This paper outlines our literature review background, investigation and practical application utilizing a precise optical survey level and total station technology for a specialist industrial measurement application. The practical part of the project was to measure and check specific critical features of the Industrial JIG assembly table used by the Queensland University of Technology (QUT) Motorsport group. The JIG is used in constructing a new Formula SAE race-car frame each year and is used throughout the racing season to check the production frame for twists, bends and potential stresses. The industrial JIG table required two survey approaches, firstly determination of the overall flatness throughout its’ steel base surface. Secondly was the validation of verticality of the steel uprights used to support and hold the race-car frame in place during construction and checking alignment for key suspension components. In addition the investigation brings realisations that there are far more accurate, efficient and economical technologies to be harnessed in industrial metrology.
Resumo:
BACKGROUND There is little doubt that our engineering graduates’ ability to identify cultural differences and their potential to impact on engineering projects, and to work effectively with these differences is of key importance in the modern engineering practice. Within engineering degree programs themselves there is also a significant need to recognise the impact of changing student and staff profiles on what happens in the classroom. The research described in this paper forms part of a larger project exploring issues of intercultural competence in engineering. PURPOSE This paper presents an observational and survey study of undergraduate and postgraduate engineering students from four institutions working in groups on tasks with a purely technical focus, or with a cultural and humanitarian element. The study sought to explore how students rate their own intercultural competence and team process and whether any differences exist depending on the nature of the task they are working on. We also investigated whether any differences were evident between groups of first year, second year and postgraduate students. DESIGN/METHOD The study used the miniCQS instrument (Ang & Van Dyne, 2008) and a Bales Interaction Process Analysis based scale (Bales, 1950; Carney, 1976) to collect students self ratings of group process, task management, and cultural experience and behaviour. The Bales IPA was also used for coding video observations of students working in groups. Survey data were used to form descriptive variables to compare outcomes across the different tasks and contexts. Observations analysed in Nvivo were used to provide commentary and additional detail on the quantitative data. RESULTS The results of the survey indicated consistent mean scores on each survey item for each group of students, despite vastly different tasks, student backgrounds and educational contexts. Some small, statistically significant mean differences existed, offering some basic insights into how task and student group composition could affect self ratings. Overall though, the results suggest minimal shift in how students view group function and their intercultural experience, irrespective of differing educational experience. CONCLUSIONS The survey results, contrasted with group observations, indicate that either students are not translating their experience (in the group tasks) into critical self assessment of their cultural competence and teamwork, or that they become more critical of team performance and cultural competence as their competence in these areas grows, so their ratings remain consistent. Both outcomes indicate that students need more intensive guidance to build their critical self and peer assessment skills in these areas irrespective of their year level of study.
Resumo:
BACKGROUND The work described in this paper has emerged from an ALTC/OLT funded project, Exploring Intercultural Competency in Engineering. The project indentified many facets of culture and intercultural competence that go beyond a culture-as-nationality paradigm. It was clear from this work that resources were needed to help engineering educators introduce students to the complex issues of culture as they relate to engineering practice. A set of learning modules focussing on intercultural competence in engineering practice were developed early on in the project. Through the OLT project, these modules have been expanded into a range of resources covering various aspects of culture in engineering. Supporting the resources, an eBook detailing the ins and outs of intercultural competency has also been developed to assist engineering educators to embed opportunities for students to develop skills in unpacking and managing cross-cultural challenges in engineering practice. PURPOSE This paper describes the key principles behind the development of the learning modules, the areas they cover and the eBook developed to support the modules. The paper is intended as an introduction to the approaches and resources and extends an invitation to the community to draw from, and contribute to this initial work. DESIGN/METHOD A key aim of this project was to go beyond the culture-as-nationality approach adopted in much of the work around intercultural competency (Deardorff, 2011). The eBook explores different dimensions of culture such as workplace culture, culture’s influence on engineering design, and culture in the classroom. The authors describe how these connect to industry practice and explore what they mean for engineering education. The packaged learning modules described here have been developed as a matrix of approaches moving from familiar known methods through complicated activities relying to some extent on expert knowledge. Some modules draw on the concept of ‘complex un-order’ as described in the ‘Cynefin domains’ proposed by Kurtz and Snowden (2003). RESULTS Several of the modules included in the eBook have already been trialled at a variety of institutions. Feedback from staff has been reassuringly positive so far. Further trials are planned for second semester 2012, and version 1 of the eBook and learning modules, Engineering Across Cultures, is due to be released in late October 2012. CONCLUSIONS The Engineering Across Cultures eBook and learning modules provide a useful and ready to employ resource to help educators tackle the complex issue of intercultural competency in engineering education. The book is by no means exhaustive, and nor are the modules, they instead provide an accessible, engineering specific guide to bringing cultural issues into the engineering classroom.
Resumo:
BACKGROUND The engineering profession in Australia has failed to attract young women for the last decade or so despite all the effort that have gone into promoting engineering as a preferred career choice for girls. It is a missed opportunity for the profession to flourish as a heterogeneous team. Many traditional initiatives and programs have failed to make much impact or at best incremental improvement into attracting and retaining more women in the profession. The reasons why girls and young women in most parts of the world show little interest in engineering haven't changed, despite all the efforts to address them, the issue proposed here in this paper is with the perceptions of engineering in the community and the confidence to pursue it. This gender imbalance is detrimental for the engineering profession, and hence an action-based intervention strategy was devised by the Women in Engineering Qld Chapter of Engineers Australia in 2012 to change the perceptions of school girls by redesigning the engagement strategy and key messages. As a result, the “Power of Engineering Inc” (PoE) was established as a not-for-profit organisation, and is a collaborative effort between government, schools, universities, and industry. This paper examines a case study in changing the perceptions of year 9 and 10 school girls towards an engineering career. PURPOSE To evaluate and determine the effectiveness of an intervention in changing the perceptions of year 9 and 10 school girls about engineering career options, but specifically, “What were their perceptions of engineering before today and have those perceptions changed?” DESIGN/METHOD The inaugural Power of Engineering (PoE) event was held on International Women’s Day, Thursday 8 March 2012 and was attended by 131 high school female students (year 9 and 10) and their teachers. The key message of the day was “engineering gives you the power to change the world”. A questionnaire was conducted with the participating high school female students, collecting both quantitative and qualitative data. The survey instrument has not been validated. RESULTS The key to the success of the event was as a result of collaboration between all participants involved and the connection created between government, schools, universities and industry. Of the returned surveys (109 of 131), 91% of girls would now consider a career in engineering and 57% who had not considered engineering before the day would now consider a career in engineering. Data collected found significant numbers of negative and varying perceptions about engineering careers prior to the intervention. CONCLUSIONS The evidence in this research suggests that the intervention assisted in changing the perceptions of year 9 and 10 female school students towards engineering as a career option. Whether this intervention translates into actual career selection and study enrolment is to be determined. In saying this, the evidence suggests that there is a critical and urgent need for earlier interventions prior to students selecting their subjects for year 11 and 12. This intervention could also play its part in increasing the overall pool of students engaged in STEM education.
Resumo:
BACKGROUND Collaborative and active learning have been clearly identified as ways students can engage in learning with each other and the academic staff. Traditional tier based lecture theatres and the didactic style they engender are not popular with students today as evidenced by the low attendance rates for lectures. Many universities are installing spaces designed with tables for group interaction with evolutions on spaces such as the TEAL (Technology Enabled Active Learning) (Massachusetts Institute of Technology, n.d.) and SCALE-UP (Student-Centred Activities for Large-Enrolment Undergraduate Programs) (North Carolina State University, n.d.) models. Technology advances in large screen computers and applications have also aided the move to these collaborative spaces. How well have universities structured learning using these spaces and how have students engaged with the content, technology, space and each other? This paper investigates the application of collaborative learning in such spaces for a cohort of 800+ first year engineers in the context of learning about and developing professional skills representative of engineering practice. PURPOSE To determine whether moving from tiers to tables enhances the student experience. Does utilising technology rich, activity based, collaborative learning spaces lead to positive experiences and active engagement of first year undergraduate engineering students? In developing learning methodology and approach in new learning spaces, what needs to change from a more traditional lecture and tutorial configuration? DESIGN/METHOD A post delivery review and analysis of outcomes was undertaken to determine how well students and tutors engaged with learning in new collaborative learning spaces. Data was gathered via focus group and survey of tutors, students survey and attendance observations. The authors considered the unit delivery approach along with observed and surveyed outcomes then conducted further review to produce the reported results. RESULTS Results indicate high participation in the collaborative sessions while the accompanying lectures were poorly attended. Students reported a high degree of satisfaction with the learning experience; however more investigation is required to determine the degree of improvement in retained learning outcomes. Survey feedback from tutors found that students engaged well in the activities during tutorials and there was an observed improvement in the quality of professional practice modelled by students during sessions. Student feedback confirmed the positive experiences in these collaborative learning spaces with 30% improvement in satisfaction ratings from previous years. CONCLUSIONS It is concluded that the right mix of space, technology and appropriate activities does engage students, improve participation and create a rich experience to facilitate potential for improved learning outcomes. The new Collaborative Teaching Spaces, together with integrated technology and tailored activities, has transformed the delivery of this unit and improved student satisfaction in tutorials significantly.
Resumo:
Describes the development and testing of a robotic system for charging blast holes in underground mining. The automation system supports four main tactical functions: detection of blast holes; teleoperated arm pose control; automatic arm pose control; and human-in-the-loop visual servoing. We present the system architecture, and analyse the major components, Hole detection is crucial for automating the process, and we discuss theoretical and practical aspects in detail. The sensors used are laser range finders and cameras installed in the end effector. For automatic insertion, we consider image processing techniques to support visual servoing the tool to the hole. We also discuss issues surrounding the control of heavy-duty mining manipulators, in particular, friction, stiction, and actuator saturation.
Resumo:
This special volume of Procedia Engineering contains papers presented at the 12th Global Congress on Manufacturing and Management (GCMM - 2014), held during 8-10 December 2014 at VIT University, Vellore, India. A total of 258 papers were presented during the conference, covering the entire spectrum of Materials Processing, Manufacturing Engineering, Industrial Engineering and Management. Materials and Manufacturing field is undergoing a rapid transformation due to unexpected challenges arising from the current approach to optimization and continuous performance improvement in manufacturing processes, production of large products and development of new materials. The 12th edition of the conference has earmarked the objective to offer a common platform for professionals, researchers and educators from industry, research centers and academia to present and discuss recent advances in the field of Manufacturing Engineering.
Resumo:
New technical and procedural interventions are less likely to be adopted in industry, unless they are smoothly integrated into the existing practices of professionals. In this paper, we provide a case study of the use of ethnographic methods for studying software bug-fixing activities at an industrial engineering conglomerate. We aimed at getting an in-depth understanding of software developers' everyday practices in bug-fixing related projects and in turn inform the design of novel productivity tools. The use of ethnography has allowed us to look at the social side of software maintenance practices. In this paper, we highlight: 1) organizational issues that influence bug-fixing activities; 2) social role of bug tracking systems, and; 3) social issues specific to different phases of bug-fixing activities.
Development of Thermally Comfortable Industrial Buildings with Effective Use of Computer Simulations
Resumo:
Ethnography has gained wide acceptance in the industrial design profession and curriculum as a means of understanding the user. However, there is considerable confusion about the particularities of its practice accompanied by the absence of an interoperable vocabulary. The consequent interdisciplinary effort is a power play between disciplines whereby the methodological view of ethnography marginalises its theoretical and analytical components. In doing so, it restricts the potential of ethnography suggesting the need for alternative methods of informing the design process. This article suggests that activity theory, with an emphasis on human activity as the fundamental unit of study, is an appropriate methodology for the generation of user requirements. The process is illustrated through the adaptation of an ethnographic case study, for the design of classroom furniture in India.
Resumo:
Industrial property is commonly located in a designated ‘industrial’ precinct. An industrial property has a specific design and a number of services to support industrial activities including manufacture, distribution and transportation. Although it has a unique characteristic, certain industrial factor might operate differently in different countries. The aim of this paper is to provide a comparison between the Sydney and Hong Kong industrial property characteristics and to highlight their similarities and differences. This exploratory research used secondary data to provide background information of government policy and market conditions. Two case studies were use to illustrate similarities, trends, differences and to explore town planning, specific property characteristics including location, design and layout. Then, analyse whether these factors influence the performance and value of an industrial asset. The location of industrial properties varies between each country and depends heavily on infrastructure. It was noted that the town planning restrictions not only vary between markets and cities but also between property lots. The market conditions of both industrial markets were investigated and the supply and demand and rental levels in both cities were distinctly opposite.
Resumo:
Optimal operation and maintenance of engineering systems heavily rely on the accurate prediction of their failures. Most engineering systems, especially mechanical systems, are susceptible to failure interactions. These failure interactions can be estimated for repairable engineering systems when determining optimal maintenance strategies for these systems. An extended Split System Approach is developed in this paper. The technique is based on the Split System Approach and a model for interactive failures. The approach was applied to simulated data. The results indicate that failure interactions will increase the hazard of newly repaired components. The intervals of preventive maintenance actions of a system with failure interactions, will become shorter compared with scenarios where failure interactions do not exist.