5 resultados para EDDIES

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean gliders constitute an important advance in the highly demanding ocean monitoring scenario. Their effciency, endurance and increasing robustness make these vehicles an ideal observing platform for many long term oceanographic applications. However, they have proved to be also useful in the opportunis-tic short term characterization of dynamic structures. Among these, mesoscale eddies are of particular interest due to the relevance they have in many oceano-graphic processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

International and national representations of the beach perpetuate normative female concepts by maintaining dominant masculine myths, such as that of the heroic lifesaver and tanned sunbaker. Female experiences on the beach are traditionally associated with rhetorics of danger and peril, contrasted to the welcomed and protective gaze of the beach male. Conventional understandings of the gaze promote male surveillance of women, and although some resistance exists, the beach primarily remains a place to observe the female form. This article attempts to explore currents of resistance at the beach through a self-reflexive examination of Schoolies. Although the event is fixed within patriarchal codes and structures, small eddies of resistance exist amongst female participants in light of increasing awareness of masculine hegemony. The Australian beach remains a contested site of multiple constructs of gender and national identity. This article reveals the changing tides of resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unsteady numerical simulation of Rayleigh Benard convection heat transfer from a 2D channel is performed. The oscillatory behavior is attributed to recirculation of ascending and descending flows towards the core of the channel producing organized rolled motions. Variation of the parameters such as Reynolds number, channel outlet flow area and inclination of the channel are considered. Increasing Reynolds number (for a fixed Rayleigh number), delays the generation of vortices. The reduction in the outflow area leads to the later and the less vortex generation. As the time progresses, more vortices are generated, but the reinforced mean velocity does not let the eddies to enter the core of the channel. Therefore, they attach to the wall and reduce the heat transfer area. The inclination of the channel (both positive and negative) induces the generated vortices to get closer to each other and make an enlarged vortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an estuary, mixing and dispersion result from a combination of large-scale advection and smallscale turbulence, which are complex to estimate. The predictions of scalar transport and mixing are often inferred and rarely accurate, due to inadequate understanding of the contributions of these difference scales to estuarine recirculation. A multi-device field study was conducted in a small sub-tropical estuary under neap tide conditions with near-zero fresh water discharge for about 48 hours. During the study, acoustic Doppler velocimeters (ADV) were sampled at high frequency (50 Hz), while an acoustic Doppler current profiler (ADCP) and global positioning system (GPS) tracked drifters were used to obtain some lower frequency spatial distribution of the flow parameters within the estuary. The velocity measurements were complemented with some continuous measurement of water depth, conductivity, temperature and some other physiochemical parameters. Thorough quality control was carried out by implementation of relevant error removal filters on the individual data set to intercept spurious data. A triple decomposition (TD) technique was introduced to access the contributions of tides, resonance and ‘true’ turbulence in the flow field. The time series of mean flow measurements for both the ADCP and drifter were consistent with those of the mean ADV data when sampled within a similar spatial domain. The tidal scale fluctuation of velocity and water level were used to examine the response of the estuary to tidal inertial current. The channel exhibited a mixed type wave with a typical phase-lag between 0.035π– 0.116π. A striking feature of the ADV velocity data was the slow fluctuations, which exhibited large amplitudes of up to 50% of the tidal amplitude, particularly in slack waters. Such slow fluctuations were simultaneously observed in a number of physiochemical properties of the channel. The ensuing turbulence field showed some degree of anisotropy. For all ADV units, the horizontal turbulence ratio ranged between 0.4 and 0.9, and decreased towards the bed, while the vertical turbulence ratio was on average unity at z = 0.32 m and approximately 0.5 for the upper ADV (z = 0.55 m). The result of the statistical analysis suggested that the ebb phase turbulence field was dominated by eddies that evolved from ejection type process, while that of the flood phase contained mixed eddies with significant amount related to sweep type process. Over 65% of the skewness values fell within the range expected of a finite Gaussian distribution and the bulk of the excess kurtosis values (over 70%) fell within the range of -0.5 and +2. The TD technique described herein allowed the characterisation of a broader temporal scale of fluctuations of the high frequency data sampled within the durations of a few tidal cycles. The study provides characterisation of the ranges of fluctuation required for an accurate modelling of shallow water dispersion and mixing in a sub-tropical estuary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent hydrodynamic theory of liquid slippage on a solid substrate (Kirkinis & Davis, Phys. Rev. Lett., vol. 110, 2013, 234503) gives rise to a sequence of eddies (Moffatt vortices) that co-move with a moving contact line (CL) in a liquid wedge. The presence of these vortices is established through secular equations that depend on the dynamic contact angle α and capillary number Ca. The limiting case α→O is associated with the appearance of such vortices in a channel. The vortices are generated by the relative motion of the interfaces, which in turn is due to the motion of the CL. This effect has yet to be observed in experiment.