22 resultados para E-compass
em Queensland University of Technology - ePrints Archive
Resumo:
The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modeled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.
Resumo:
Compass Points: The Locations, Landscapes and Coordinates of Identities' the Australasian Association for Theatre, Drama and Performance Studies (ADSA) Conference 2012 was held at Queensland University of Technology, July 3-6 2012. The Conference was sponsored by the Australasian Association for Theatre, Drama and Performance Studies (ADSA), Queensland University of Technology (QUT), Ian Potter Foundation, Arts Queensland, La Boite Theatre Company and Queensland Theatre Company. The papers selected for this collection represent a small sample of the scope, depth and diversity of scholarship presented at the conference - they cover a range of genres, cultures and contexts in contemporary performance making from autobiography, to playwrighting, to public space performance and beyond. The papers collected have been peer-reviewed to Australia’s Department of Education, Science and Training (DEST) standards - each has been subject to two blind reviews, followed by acceptance, rejection or revision, and editing of accepted papers - by colleagues from Australasia and overseas. The review process for the conference publication was separate from the review process for acceptance of abstracts for the actual conference presentations. The conference convenors, Bree Hadley and Caroline Heim, edited the collection, and would like to thank all those who gave their time to advise on the peer review process and act as reviewers - Tom Burvill, Christine Comans, Sean Edgecomb, Angela Campbell, Natalie Lazaroo, Jo Loth, Meg Mumford, Ulrike Garde, Laura Ginters, Andre Bastian, Sam Trubridge, Delyse Ryan, Georgia Seffrin, Gillian Arrighi, Rand Hazou, Rob Pensalfini, Sue Fenty-Studham, Mark Radvan, Rob Conkie, Kris Plummer, Lisa Warrington, Kate Flaherty, Bryoni Tresize, Janys Hayes, Lisa Warrington, Teresa Izzard, Kim Durban, Veronica Kelly, Adrian Keirnander, James Davenport, Julie Robson and others. We, and the authors, appreciate the rigour and care with which peers have approached the scholarship presented here. This collection was published in final form on July 3rd 2012, the first day of the ADSA Conference 2012.
Resumo:
Ambiguity resolution plays a crucial role in real time kinematic GNSS positioning which gives centimetre precision positioning results if all the ambiguities in each epoch are correctly fixed to integers. However, the incorrectly fixed ambiguities can result in large positioning offset up to several meters without notice. Hence, ambiguity validation is essential to control the ambiguity resolution quality. Currently, the most popular ambiguity validation is ratio test. The criterion of ratio test is often empirically determined. Empirically determined criterion can be dangerous, because a fixed criterion cannot fit all scenarios and does not directly control the ambiguity resolution risk. In practice, depending on the underlying model strength, the ratio test criterion can be too conservative for some model and becomes too risky for others. A more rational test method is to determine the criterion according to the underlying model and user requirement. Miss-detected incorrect integers will lead to a hazardous result, which should be strictly controlled. In ambiguity resolution miss-detected rate is often known as failure rate. In this paper, a fixed failure rate ratio test method is presented and applied in analysis of GPS and Compass positioning scenarios. A fixed failure rate approach is derived from the integer aperture estimation theory, which is theoretically rigorous. The criteria table for ratio test is computed based on extensive data simulations in the approach. The real-time users can determine the ratio test criterion by looking up the criteria table. This method has been applied in medium distance GPS ambiguity resolution but multi-constellation and high dimensional scenarios haven't been discussed so far. In this paper, a general ambiguity validation model is derived based on hypothesis test theory, and fixed failure rate approach is introduced, especially the relationship between ratio test threshold and failure rate is examined. In the last, Factors that influence fixed failure rate approach ratio test threshold is discussed according to extensive data simulation. The result shows that fixed failure rate approach is a more reasonable ambiguity validation method with proper stochastic model.
Resumo:
Adherence to behavioral weight loss strategies is important for weight loss success. We aimed to examine the reliability and validity of a newly developed compliance praxis-diet (COMPASS-diet) survey with participants in a 10-week dietary intervention program. During the third of five sessions, participants of the “slim-without-diet” weight loss program (n = 253) completed the COMPASS-diet survey and provided data on demographic and clinical characteristics, and general self-efficacy. Group facilitators completed the COMPASS-diet-other scale estimating participants’ likely adherence from their perspective. We calculated internal consistency, convergent validity, and predictive value for objectively measured weight loss. Mean COMPASS-diet-self score was 82.4 (SD 14.2) and COMPASS-diet-other score 80.9 (SD 13.6) (possible range 12–108), with lowest scores in the normative behavior subscale. Cronbach alpha scores of the COMPASS-diet-self and -other scale were good (0.82 and 0.78, respectively). COMPASS-diet-self scores (r = 0.31) correlated more highly with general self-efficacy compared to COMPASS-diet-other scores (r = 0.04) providing evidence for validity. In multivariable analysis adjusted for age and gender, both the COMPASS-diet-self (F = 10.8, p < 0.001, r2 = 0.23) and other (F = 5.5, p < 0.001, r2 = 0.19) scales were significantly associated with weight loss achieved at program conclusion. COMPASS-diet surveys will allow group facilitators or trainers to identify patients who need additional support for optimal weight loss.
Resumo:
In this editorial letter, we provide the readers of Information Systems Management with a background on process design before we discuss the content of the special issue proper. By introducing and describing a so-called process design compass we aim to clarify what developments in the field are taking place and how the papers in this special issue expand on our current knowledge in this domain.
Resumo:
Real-Time Kinematic (RTK) positioning is a technique used to provide precise positioning services at centimetre accuracy level in the context of Global Navigation Satellite Systems (GNSS). While a Network-based RTK (N-RTK) system involves multiple continuously operating reference stations (CORS), the simplest form of a NRTK system is a single-base RTK. In Australia there are several NRTK services operating in different states and over 1000 single-base RTK systems to support precise positioning applications for surveying, mining, agriculture, and civil construction in regional areas. Additionally, future generation GNSS constellations, including modernised GPS, Galileo, GLONASS, and Compass, with multiple frequencies have been either developed or will become fully operational in the next decade. A trend of future development of RTK systems is to make use of various isolated operating network and single-base RTK systems and multiple GNSS constellations for extended service coverage and improved performance. Several computational challenges have been identified for future NRTK services including: • Multiple GNSS constellations and multiple frequencies • Large scale, wide area NRTK services with a network of networks • Complex computation algorithms and processes • Greater part of positioning processes shifting from user end to network centre with the ability to cope with hundreds of simultaneous users’ requests (reverse RTK) There are two major requirements for NRTK data processing based on the four challenges faced by future NRTK systems, expandable computing power and scalable data sharing/transferring capability. This research explores new approaches to address these future NRTK challenges and requirements using the Grid Computing facility, in particular for large data processing burdens and complex computation algorithms. A Grid Computing based NRTK framework is proposed in this research, which is a layered framework consisting of: 1) Client layer with the form of Grid portal; 2) Service layer; 3) Execution layer. The user’s request is passed through these layers, and scheduled to different Grid nodes in the network infrastructure. A proof-of-concept demonstration for the proposed framework is performed in a five-node Grid environment at QUT and also Grid Australia. The Networked Transport of RTCM via Internet Protocol (Ntrip) open source software is adopted to download real-time RTCM data from multiple reference stations through the Internet, followed by job scheduling and simplified RTK computing. The system performance has been analysed and the results have preliminarily demonstrated the concepts and functionality of the new NRTK framework based on Grid Computing, whilst some aspects of the performance of the system are yet to be improved in future work.
Resumo:
This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.
Resumo:
This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.
Resumo:
Agriculture accounts for a significant portion of the GDP in most developed countries. However, managing farms, particularly largescale extensive farming systems, is hindered by lack of data and increasing shortage of labour. We have deployed a large heterogeneous sensor network on a working farm to explore sensor network applications that can address some of the issues identified above. Our network is solar powered and has been running for over 6 months. The current deployment consists of over 40 moisture sensors that provide soil moisture profiles at varying depths, weight sensors to compute the amount of food and water consumed by animals, electronic tag readers, up to 40 sensors that can be used to track animal movement (consisting of GPS, compass and accelerometers), and 20 sensor/actuators that can be used to apply different stimuli (audio, vibration and mild electric shock) to the animal. The static part of the network is designed for 24/7 operation and is linked to the Internet via a dedicated high-gain radio link, also solar powered. The initial goals of the deployment are to provide a testbed for sensor network research in programmability and data handling while also being a vital tool for scientists to study animal behavior. Our longer term aim is to create a management system that completely transforms the way farms are managed.
Resumo:
In this paper, we outline the sensing system used for the visual pose control of our experimental car-like vehicle, the autonomous tractor. The sensing system consists of a magnetic compass, an omnidirectional camera and a low-resolution odometry system. In this work, information from these sensors is fused using complementary filters. Complementary filters provide a means of fusing information from sensors with different characteristics in order to produce a more reliable estimate of the desired variable. Here, the range and bearing of landmarks observed by the vision system are fused with odometry information and a vehicle model, providing a more reliable estimate of these states. We also present a method of combining a compass sensor with odometry and a vehicle model to improve the heading estimate.
Resumo:
In this paper, we outline the sensing system used for the visual pose control of our experimental car-like vehicle, the Autonomous Tractor. The sensing system consists of a magnetic compass, an omnidirectional camera and a low-resolution odometry system. In this work, information from these sensors is fused using complementary filters. Complementary filters provide a means of fusing information from sensors with different characteristics in order to produce a more reliable estimate of the desired variable. Here, the range and bearing of landmarks observed by the vision system are fused with odometry information and a vehicle model, providing a more reliable estimate of these states. We also present a method of combining a compass sensor with odometry and a vehicle model to improve the heading estimate.
Resumo:
Maps are used to represent three-dimensional space and are integral to a range of everyday experiences. They are increasingly used in mathematics, being prominent both in school curricula and as a form of assessing students understanding of mathematics ideas. In order to successfully interpret maps, students need to be able to understand that maps: represent space, have their own perspective and scale, and their own set of symbols and texts. Despite the fact that maps have an increased prevalence in society and school, there is evidence to suggest that students have difficulty interpreting maps. This study investigated 43 primary-aged students’ (aged 9-12 years) verbal and gestural behaviours as they engaged with and solved map tasks. Within a multiliteracies framework that focuses on spatial, visual, linguistic, and gestural elements, the study investigated how students interpret map tasks. Specifically, the study sought to understand students’ skills and approaches used to solving map tasks and the gestural behaviours they utilised as they engaged with map tasks. The investigation was undertaken using the Knowledge Discovery in Data (KDD) design. The design of this study capitalised on existing research data to carry out a more detailed analysis of students’ interpretation of map tasks. Video data from an existing data set was reorganised according to two distinct episodes—Task Solution and Task Explanation—and analysed within the multiliteracies framework. Content Analysis was used with these data and through anticipatory data reduction techniques, patterns of behaviour were identified in relation to each specific map task by looking at task solution, task correctness and gesture use. The findings of this study revealed that students had a relatively sound understanding of general mapping knowledge such as identifying landmarks, using keys, compass points and coordinates. However, their understanding of mathematical concepts pertinent to map tasks including location, direction, and movement were less developed. Successful students were able to interpret the map tasks and apply relevant mathematical understanding to navigate the spatial demands of the map tasks while the unsuccessful students were only able to interpret and understand basic map conventions. In terms of their gesture use, the more difficult the task, the more likely students were to exhibit gestural behaviours to solve the task. The most common form of gestural behaviour was deictic, that is a pointing gesture. Deictic gestures not only aided the students capacity to explain how they solved the map tasks but they were also a tool which assisted them to navigate and monitor their spatial movements when solving the tasks. There were a number of implications for theory, learning and teaching, and test and curriculum design arising from the study. From a theoretical perspective, the findings of the study suggest that gesturing is an important element of multimodal engagement in mapping tasks. In terms of teaching and learning, implications include the need for students to utilise gesturing techniques when first faced with new or novel map tasks. As students become more proficient in solving such tasks, they should be encouraged to move beyond a reliance on such gesture use in order to progress to more sophisticated understandings of map tasks. Additionally, teachers need to provide students with opportunities to interpret and attend to multiple modes of information when interpreting map tasks.
Resumo:
In this paper, we present a method for the recovery of position and absolute attitude (including pitch, roll and yaw) using a novel fusion of monocular Visual Odometry and GPS measurements in a similar manner to a classic loosely-coupled GPS/INS error state navigation filter. The proposed filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. An observability analysis of the proposed filter is performed, showing that the scale factor, position and attitude errors are fully observable under acceleration that is non-parallel to velocity vector in the navigation frame. The observability properties of the proposed filter are demonstrated using numerical simulations. We conclude the article with an implementation of the proposed filter using real flight data collected from a Cessna 172 equipped with a downwards-looking camera and GPS, showing the feasibility of the algorithm in real-world conditions.
Resumo:
For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.