539 resultados para Dynamic networks

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manual calibration of large and dynamic networks of cameras is labour intensive and time consuming. This is a strong motivator for the development of automatic calibration methods. Automatic calibration relies on the ability to find correspondences between multiple views of the same scene. If the cameras are sparsely placed, this can be a very difficult task. This PhD project focuses on the further development of uncalibrated wide baseline matching techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Networks are having a profound impact on the way society is organised at the local, national and international level. Networks are not ‘business as usual’. The defining feature of networks and a key indicator for their success is the strength and quality of the interactions between members. This relational power of networks provides the mechanism to bring together previously dispersed and even competitive entities into a collective venture. Such an operating context demands the ability to work in a more horizontal, relational manner. In addition a social infrastructure must be formed that will support and encourage efforts to become more collaborative. This paper seeks to understand how network members come to know about working in networks, how they work on their relationships and create new meanings about the nature of their linked work. In doing so, it proposes that learning, language and leadership, herein defined as the ‘3Ls’ represent critical mediating aspects for networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mixed use typologies and pedestrian networks are two strategies commonly applied in design of the contemporary city. These approaches, aimed towards the creation of a more sustainalble urban environment, have their roots in the traditional, pre-industrial towns; they characterize urban form, articulating the tension between privaate and public realms through a series of typological variations as well as stimulating commercial activity in the city centre. Arcades, loggias and verandas are just some of the elements which can mediate this tension. Historically they have defined physical and social spaces with particular character; in the contemporary city these features are applied to deform the urban form and create a porous, dynamic morphology. This paper, comparing case studies from Italy, Japan and Australia, investigates how the design of the transition zone can define hybrid pedestrian networks, where a clear distinction between the public and private realms is no longer applicable. Pedestrians use the city in a dynamic way, combining trajectories on the public street with ones on the fringe or inside of the private built environment. In some cases, cities offer different pedestrian network possibilities at different times, as the commercial precints are subject to variations in accessibility across various timeframes. These walkable systems have an impact on the urban form and identity of places, redefining typologies and requiring an in depth analysis through plan, section and elevation diagrams.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Twitter is now well established as the world’s second most important social media platform, after Facebook. Its 140-character updates are designed for brief messaging, and its network structures are kept relatively flat and simple: messages from users are either public and visible to all (even to unregistered visitors using the Twitter website), or private and visible only to approved ‘followers’ of the sender; there are no more complex definitions of degrees of connection (family, friends, friends of friends) as they are available in other social networks. Over time, Twitter users have developed simple, but effective mechanisms for working around these limitations: ‘#hashtags’, which enable the manual or automatic collation of all tweets containing the same #hashtag, as well allowing users to subscribe to content feeds that contain only those tweets which feature specific #hashtags; and ‘@replies’, which allow senders to direct public messages even to users whom they do not already follow. This paper documents a methodology for extracting public Twitter activity data around specific #hashtags, and for processing these data in order to analyse and visualize the @reply networks existing between participating users – both overall, as a static network, and over time, to highlight the dynamic structure of @reply conversations. Such visualizations enable us to highlight the shifting roles played by individual participants, as well as the response of the overall #hashtag community to new stimuli – such as the entry of new participants or the availability of new information. Over longer timeframes, it is also possible to identify different phases in the overall discussion, or the formation of distinct clusters of preferentially interacting participants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of bridge deterioration models to predict future condition provides significant advantages in improving the effectiveness of maintenance decisions. This paper proposes a novel model using Dynamic Bayesian Networks (DBNs) for predicting the condition of bridge elements. The proposed model improves prediction results by being able to handle, deterioration dependencies among different bridge elements, the lack of full inspection histories, and joint considerations of both maintenance actions and environmental effects. With Bayesian updating capability, different types of data and information can be utilised as inputs. Expert knowledge can be used to deal with insufficient data as a starting point. The proposed model established a flexible basis for bridge systems deterioration modelling so that other models and Bayesian approaches can be further developed in one platform. A steel bridge main girder was chosen to validate the proposed model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The serviceability and safety of bridges are crucial to people’s daily lives and to the national economy. Every effort should be taken to make sure that bridges function safely and properly as any damage or fault during the service life can lead to transport paralysis, catastrophic loss of property or even casualties. Nonetheless, aggressive environmental conditions, ever-increasing and changing traffic loads and aging can all contribute to bridge deterioration. With often constrained budget, it is of significance to identify bridges and bridge elements that should be given higher priority for maintenance, rehabilitation or replacement, and to select optimal strategy. Bridge health prediction is an essential underpinning science to bridge maintenance optimization, since the effectiveness of optimal maintenance decision is largely dependent on the forecasting accuracy of bridge health performance. The current approaches for bridge health prediction can be categorised into two groups: condition ratings based and structural reliability based. A comprehensive literature review has revealed the following limitations of the current modelling approaches: (1) it is not evident in literature to date that any integrated approaches exist for modelling both serviceability and safety aspects so that both performance criteria can be evaluated coherently; (2) complex system modelling approaches have not been successfully applied to bridge deterioration modelling though a bridge is a complex system composed of many inter-related bridge elements; (3) multiple bridge deterioration factors, such as deterioration dependencies among different bridge elements, observed information, maintenance actions and environmental effects have not been considered jointly; (4) the existing approaches are lacking in Bayesian updating ability to incorporate a variety of event information; (5) the assumption of series and/or parallel relationship for bridge level reliability is always held in all structural reliability estimation of bridge systems. To address the deficiencies listed above, this research proposes three novel models based on the Dynamic Object Oriented Bayesian Networks (DOOBNs) approach. Model I aims to address bridge deterioration in serviceability using condition ratings as the health index. The bridge deterioration is represented in a hierarchical relationship, in accordance with the physical structure, so that the contribution of each bridge element to bridge deterioration can be tracked. A discrete-time Markov process is employed to model deterioration of bridge elements over time. In Model II, bridge deterioration in terms of safety is addressed. The structural reliability of bridge systems is estimated from bridge elements to the entire bridge. By means of conditional probability tables (CPTs), not only series-parallel relationship but also complex probabilistic relationship in bridge systems can be effectively modelled. The structural reliability of each bridge element is evaluated from its limit state functions, considering the probability distributions of resistance and applied load. Both Models I and II are designed in three steps: modelling consideration, DOOBN development and parameters estimation. Model III integrates Models I and II to address bridge health performance in both serviceability and safety aspects jointly. The modelling of bridge ratings is modified so that every basic modelling unit denotes one physical bridge element. According to the specific materials used, the integration of condition ratings and structural reliability is implemented through critical failure modes. Three case studies have been conducted to validate the proposed models, respectively. Carefully selected data and knowledge from bridge experts, the National Bridge Inventory (NBI) and existing literature were utilised for model validation. In addition, event information was generated using simulation to demonstrate the Bayesian updating ability of the proposed models. The prediction results of condition ratings and structural reliability were presented and interpreted for basic bridge elements and the whole bridge system. The results obtained from Model II were compared with the ones obtained from traditional structural reliability methods. Overall, the prediction results demonstrate the feasibility of the proposed modelling approach for bridge health prediction and underpin the assertion that the three models can be used separately or integrated and are more effective than the current bridge deterioration modelling approaches. The primary contribution of this work is to enhance the knowledge in the field of bridge health prediction, where more comprehensive health performance in both serviceability and safety aspects are addressed jointly. The proposed models, characterised by probabilistic representation of bridge deterioration in hierarchical ways, demonstrated the effectiveness and pledge of DOOBNs approach to bridge health management. Additionally, the proposed models have significant potential for bridge maintenance optimization. Working together with advanced monitoring and inspection techniques, and a comprehensive bridge inventory, the proposed models can be used by bridge practitioners to achieve increased serviceability and safety as well as maintenance cost effectiveness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Because moving depictions of face emotion have greater ecological validity than their static counterparts, it has been suggested that still photographs may not engage ‘authentic’ mechanisms used to recognize facial expressions in everyday life. To date, however, no neuroimaging studies have adequately addressed the question of whether the processing of static and dynamic expressions rely upon different brain substrates. To address this, we performed an functional magnetic resonance imaging (fMRI) experiment wherein participants made emotional expression discrimination and Sex discrimination judgements to static and moving face images. Compared to Sex discrimination, Emotion discrimination was associated with widespread increased activation in regions of occipito-temporal, parietal and frontal cortex. These regions were activated both by moving and by static emotional stimuli, indicating a general role in the interpretation of emotion. However, portions of the inferior frontal gyri and supplementary/pre-supplementary motor area showed task by motion interaction. These regions were most active during emotion judgements to static faces. Our results demonstrate a common neural substrate for recognizing static and moving facial expressions, but suggest a role for the inferior frontal gyrus in supporting simulation processes that are invoked more strongly to disambiguate static emotional cues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Predicting temporal responses of ecosystems to disturbances associated with industrial activities is critical for their management and conservation. However, prediction of ecosystem responses is challenging due to the complexity and potential non-linearities stemming from interactions between system components and multiple environmental drivers. Prediction is particularly difficult for marine ecosystems due to their often highly variable and complex natures and large uncertainties surrounding their dynamic responses. Consequently, current management of such systems often rely on expert judgement and/or complex quantitative models that consider only a subset of the relevant ecological processes. Hence there exists an urgent need for the development of whole-of-systems predictive models to support decision and policy makers in managing complex marine systems in the context of industry based disturbances. This paper presents Dynamic Bayesian Networks (DBNs) for predicting the temporal response of a marine ecosystem to anthropogenic disturbances. The DBN provides a visual representation of the problem domain in terms of factors (parts of the ecosystem) and their relationships. These relationships are quantified via Conditional Probability Tables (CPTs), which estimate the variability and uncertainty in the distribution of each factor. The combination of qualitative visual and quantitative elements in a DBN facilitates the integration of a wide array of data, published and expert knowledge and other models. Such multiple sources are often essential as one single source of information is rarely sufficient to cover the diverse range of factors relevant to a management task. Here, a DBN model is developed for tropical, annual Halophila and temperate, persistent Amphibolis seagrass meadows to inform dredging management and help meet environmental guidelines. Specifically, the impacts of capital (e.g. new port development) and maintenance (e.g. maintaining channel depths in established ports) dredging is evaluated with respect to the risk of permanent loss, defined as no recovery within 5 years (Environmental Protection Agency guidelines). The model is developed using expert knowledge, existing literature, statistical models of environmental light, and experimental data. The model is then demonstrated in a case study through the analysis of a variety of dredging, environmental and seagrass ecosystem recovery scenarios. In spatial zones significantly affected by dredging, such as the zone of moderate impact, shoot density has a very high probability of being driven to zero by capital dredging due to the duration of such dredging. Here, fast growing Halophila species can recover, however, the probability of recovery depends on the presence of seed banks. On the other hand, slow growing Amphibolis meadows have a high probability of suffering permanent loss. However, in the maintenance dredging scenario, due to the shorter duration of dredging, Amphibolis is better able to resist the impacts of dredging. For both types of seagrass meadows, the probability of loss was strongly dependent on the biological and ecological status of the meadow, as well as environmental conditions post-dredging. The ability to predict the ecosystem response under cumulative, non-linear interactions across a complex ecosystem highlights the utility of DBNs for decision support and environmental management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional media are under assault from digital technologies. Online advertising is eroding the financial basis of newspapers and television, demarcations between different forms of media are fading, and audiences are fragmenting. We can podcast our favourite radio show, data accompanies television programs, and we catch up with newspaper stories on our laptops. Yet mainstream media remain enormously powerful. The Media and Communications in Australia offers a systematic introduction to this dynamic field. Fully updated and revised to take account of recent developments, this third edition outlines the key media industries and explains how communications technologies are impacting on them. It provides a thorough overview of the main approaches taken in studying the media, and includes new chapters on social media, gaming, telecommunications, sport and cultural diversity. With contributions from some of Australia's best researchers and teachers in the field, The Media and Communications in Australia is the most comprehensive and reliable introduction to media and communications available. It is an ideal student text, and a reference for teachers of media and anyone interested in this influential industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile ad-hoc networks (MANETs) are temporary wireless networks useful in emergency rescue services, battlefields operations, mobile conferencing and a variety of other useful applications. Due to dynamic nature and lack of centralized monitoring points, these networks are highly vulnerable to attacks. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. We take benefit of the clustering concept in MANETs for the effective communication between nodes, where each cluster involves a number of member nodes and is managed by a cluster-head. It can be taken as an advantage in these battery and memory constrained networks for the purpose of intrusion detection, by separating tasks for the head and member nodes, at the same time providing opportunity for launching collaborative detection approach. The clustering schemes are generally used for the routing purposes to enhance the route efficiency. However, the effect of change of a cluster tends to change the route; thus degrades the performance. This paper presents a low overhead clustering algorithm for the benefit of detecting intrusion rather than efficient routing. It also discusses the intrusion detection techniques with the help of this simplified clustering scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces an energy-efficient Rate Adaptive MAC (RA-MAC) protocol for long-lived Wireless Sensor Networks (WSN). Previous research shows that the dynamic and lossy nature of wireless communication is one of the major challenges to reliable data delivery in a WSN. RA-MAC achieves high link reliability in such situations by dynamically trading off radio bit rate for signal processing gain. This extra gain reduces the packet loss rate which results in lower energy expenditure by reducing the number of retransmissions. RA-MAC selects the optimal data rate based on channel conditions with the aim of minimizing energy consumption. We have implemented RA-MAC in TinyOS on an off-the-shelf sensor platform (TinyNode), and evaluated its performance by comparing RA-MAC with state-ofthe- art WSN MAC protocol (SCP-MAC) by experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large-scale, outdoor, pervasive computing system based on the Fleck hardware platform applies sensor network technology to farming. Comprising static and animal-borne mobile nodes, the system measures the state of a complex, dynamic system comprising climate, soil, pasture, and animals. This data supports prediction of the land's future state and improved management outcomes through closed-loop control. This article is part of a special issue, Building a Sensor-Rich World.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to explore a new approach to obtain better traffic demand (Origin-Destination, OD matrices) for dense urban networks. From reviewing existing methods, from static to dynamic OD matrix evaluation, possible deficiencies in the approach could be identified: traffic assignment details for complex urban network and lacks in dynamic approach. To improve the global process of traffic demand estimation, this paper is focussing on a new methodology to determine dynamic OD matrices for urban areas characterized by complex route choice situation and high level of traffic controls. An iterative bi-level approach will be used, the Lower level (traffic assignment) problem will determine, dynamically, the utilisation of the network by vehicles using heuristic data from mesoscopic traffic simulator and the Upper level (matrix adjustment) problem will proceed to an OD estimation using optimization Kalman filtering technique. In this way, a full dynamic and continuous estimation of the final OD matrix could be obtained. First results of the proposed approach and remarks are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the areawide Dynamic ROad traffic NoisE (DRONE) simulator, and its implementation as a tool for noise abatement policy evaluation. DRONE involves integrating a road traffic noise estimation model with a traffic simulator to estimate road traffic noise in urban networks. An integrated traffic simulation-noise estimation model provides an interface for direct input of traffic flow properties from simulation model to noise estimation model that in turn estimates the noise on a spatial and temporal scale. The output from DRONE is linked with a geographical information system for visual representation of noise levels in the form of noise contour maps.