469 resultados para Dynamic efficiency

em Queensland University of Technology - ePrints Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

It has long been recognised that government and public sector services suffer an innovation deficit compared to private or market-based services. This paper argues that this can be explained as an unintended consequence of the concerted public sector drive toward the elimination of waste through efficiency, accountability and transparency. Yet in an evolving economy this can be a false efficiency, as it also eliminates the 'good waste' that is a necessary cost of experimentation. This results in a systematic trade0off in the public sector between the static efficiency of minimizing the misuse of public resources and the dynamic efficiency of experimentation. this is inherently biased against risk and uncertainty and therein, explains why governments find service innovation so difficult. In the drive to eliminate static inefficiencies, many political systems have susequently overshot and stifled policy innovation. I propose the 'Red Queen' solution of adaptive economic policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The automation of various aspects of air traffic management has many wide-reaching benefits including: reducing the workload for Air Traffic Controllers; increasing the flexibility of operations (both civil and military) within the airspace system through facilitating automated dynamic changes to en-route flight plans; ensuring safe aircraft separation for a complex mix of airspace users within a highly complex and dynamic airspace management system architecture. These benefits accumulate to increase the efficiency and flexibility of airspace use(1). Such functions are critical for the anticipated increase in volume of manned and unmanned aircraft traffic. One significant challenge facing the advancement of airspace automation lies in convincing air traffic regulatory authorities that the level of safety achievable through the use of automation concepts is comparable to, or exceeds, the accepted safety performance of the current system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile robots are widely used in many industrial fields. Research on path planning for mobile robots is one of the most important aspects in mobile robots research. Path planning for a mobile robot is to find a collision-free route, through the robot’s environment with obstacles, from a specified start location to a desired goal destination while satisfying certain optimization criteria. Most of the existing path planning methods, such as the visibility graph, the cell decomposition, and the potential field are designed with the focus on static environments, in which there are only stationary obstacles. However, in practical systems such as Marine Science Research, Robots in Mining Industry, and RoboCup games, robots usually face dynamic environments, in which both moving and stationary obstacles exist. Because of the complexity of the dynamic environments, research on path planning in the environments with dynamic obstacles is limited. Limited numbers of papers have been published in this area in comparison with hundreds of reports on path planning in stationary environments in the open literature. Recently, a genetic algorithm based approach has been introduced to plan the optimal path for a mobile robot in a dynamic environment with moving obstacles. However, with the increase of the number of the obstacles in the environment, and the changes of the moving speed and direction of the robot and obstacles, the size of the problem to be solved increases sharply. Consequently, the performance of the genetic algorithm based approach deteriorates significantly. This motivates the research of this work. This research develops and implements a simulated annealing algorithm based approach to find the optimal path for a mobile robot in a dynamic environment with moving obstacles. The simulated annealing algorithm is an optimization algorithm similar to the genetic algorithm in principle. However, our investigation and simulations have indicated that the simulated annealing algorithm based approach is simpler and easier to implement. Its performance is also shown to be superior to that of the genetic algorithm based approach in both online and offline processing times as well as in obtaining the optimal solution for path planning of the robot in the dynamic environment. The first step of many path planning methods is to search an initial feasible path for the robot. A commonly used method for searching the initial path is to randomly pick up some vertices of the obstacles in the search space. This is time consuming in both static and dynamic path planning, and has an important impact on the efficiency of the dynamic path planning. This research proposes a heuristic method to search the feasible initial path efficiently. Then, the heuristic method is incorporated into the proposed simulated annealing algorithm based approach for dynamic robot path planning. Simulation experiments have shown that with the incorporation of the heuristic method, the developed simulated annealing algorithm based approach requires much shorter processing time to get the optimal solutions in the dynamic path planning problem. Furthermore, the quality of the solution, as characterized by the length of the planned path, is also improved with the incorporated heuristic method in the simulated annealing based approach for both online and offline path planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a multi-layer spectrum sensing optimisation algorithm to maximise sensing efficiency by computing the optimal sensing and transmission durations for a fast changing, dynamic primary user. Dynamic primary user traffic is modelled as a random process, where the primary user changes states during both the sensing period and transmission period to reflect a more realistic scenario. Furthermore, we formulate joint constraints to correctly reflect interference to the primary user and lost opportunity of the secondary user during the transmission period. Finally, we implement a novel duty cycle based detector that is optimised with respect to PU traffic to accurately detect primary user activity during the sensing period. Simulation results show that unlike currently used detection models, the proposed algorithm can jointly optimise the sensing and transmission durations to simultaneously satisfy the optimisation constraints for the considered primary user traffic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The University of Queensland UltraCommuter concept is an ultra- light, low-drag, hybrid-electric sports coupe designed to minimize energy consumption and environmental impact while enhancing the performance, styling, features and convenience that motorists enjoy. This paper presents a detailed simulation study of the vehicle's performance and fuel economy using ADVISOR, including a detailed description of the component models and parameters assumed. Results from the study include predictions of a 0-100 kph acceleration time of ≺9s, and top speed of 170 kph, an electrical energy consumption of ≺67 Wh/km in ZEV mode and a petrol-equivalent fuel consumption of ≺2.5 L/100 km in charge-sustaining HEV mode. Overall, the results of the ADVISOR modelling confirm the UltraCommuter's potential to achieve high performance with high efficiency, and the authors look forward to a confirmation of these estimates following completion of the vehicle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Condensation technique of degree of freedom is first proposed to improve the computational efficiency of meshfree method with Galerkin weak form for elastic dynamic analysis. In the present method, scattered nodes without connectivity are divided into several subsets by cells with arbitrary shape. Local discrete equation is established over each cell by using moving Kriging interpolation, in which the nodes that located in the cell are used for approximation. Then local discrete equations can be simplified by condensation of degree of freedom, which transfers equations of inner nodes to equations of boundary nodes based on cells. The global dynamic system equations are obtained by assembling all local discrete equations and are solved by using the standard implicit Newmark’s time integration scheme. In the scheme of present method, the calculation of each cell is carried out by meshfree method, and local search is implemented in interpolation. Numerical examples show that the present method has high computational efficiency and good accuracy in solving elastic dynamic problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein molecular motors are natural nano-machines that convert the chemical energy from the hydrolysis of adenosine triphosphate into mechanical work. These efficient machines are central to many biological processes, including cellular motion, muscle contraction and cell division. The remarkable energetic efficiency of the protein molecular motors coupled with their nano-scale has prompted an increasing number of studies focusing on their integration in hybrid micro- and nanodevices, in particular using linear molecular motors. The translation of these tentative devices into technologically and economically feasible ones requires an engineering, design-orientated approach based on a structured formalism, preferably mathematical. This contribution reviews the present state of the art in the modelling of protein linear molecular motors, as relevant to the future design-orientated development of hybrid dynamic nanodevices. © 2009 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project constructs a scheduling solution for the Emergency Department. The schedules are generated in real-time to adapt to new patient arrivals and changing conditions. An integrated scheduling formulation assigns patients to beds and treatment tasks to resources. The schedule efficiency is assessed using waiting time and total care time experienced by patients. The solution algorithm incorporates dispatch rules, meta-heuristics and a new extended disjunctive graph formulation which provide high quality solutions in a fast time-frame for real time decision support. This algorithm can be implemented in an electronic patient management system to improve patient flow in the Emergency Department.