462 resultados para Dynamic Stability
em Queensland University of Technology - ePrints Archive
Resumo:
This paper presents a study done into the effectiveness of using local acceleration measurements vs. remote angle measurements in providing stabilising control via SVCs following large disturbances. The system studied was an analogue of the Queensland-New South Wales Interconnection (QNI) and involved the control of an existing Static Var Compensators (SVC) at Sydney West. This study is placed in the context of wide area controls for large systems using aggregated models for groups of machines.
Resumo:
Objective: To investigate limb loading and dynamic stability during squatting in the early functional recovery of total hip arthroplasty (THA) patients. Design: Cohort study Setting: Inpatient rehabilitation clinic. Participants: A random sample of 61 THA patients (34♂/27♀; 62±9 yrs, 77±14 kg, 174±9 cm) was assessed twice, 13.2±3.8 days (PRE) and 26.6±3.3 days post-surgery (POST), and compared with a healthy reference group (REF) (22♂/16♀; 47±12yrs; 78±20kg; 175±10cm). Interventions: THA patients received two weeks of standard in-patient rehabilitation. Main Outcome Measure(s): Inter-limb vertical force distribution and dynamic stability during the squat maneuver, as defined by the root mean square (RMS) of the center of pressure in antero-posterior and medio-lateral directions, of operated (OP) and non-operated (NON)limbs. Self-reported function was assessed via FFb-H-OA 2.0 questionnaire. Results: At PRE, unloading of the OP limb was 15.8% greater (P<.001, d=1.070) and antero-posterior and medio-lateral center of pressure RMS were 30-34% higher in THA than REF P<.05). Unloading was reduced by 12.8% towards a more equal distribution from PRE to POST (P<.001, d=0.874). Although medio-lateral stability improved between PRE and POST (OP: 14.8%, P=.024, d=0.397; NON: 13.1%, P=.015, d=0.321), antero-posterior stability was not significantly different. Self-reported physical function improved by 15.8% (P<.001, d=0.965). Conclusion(s): THA patients unload the OP limb and are dynamically more unstable during squatting in the early rehabilitation phase following total hip replacement than healthy adults. Although loading symmetry and medio-lateral stability improved to the level of healthy adults with rehabilitation, antero-posterior stability remained impaired. Measures of dynamic stability and load symmetry during squatting provide quantitative information that can be used to clinically monitor early functional recovery from THA.
Resumo:
It has become more and more demanding to investigate the impacts of wind farms on power system operation as ever-increasing penetration levels of wind power have the potential to bring about a series of dynamic stability problems for power systems. This paper undertakes such an investigation through investigating the small signal and transient stabilities of power systems that are separately integrated with three types of wind turbine generators (WTGs), namely the squirrel cage induction generator (SCIG), the doubly fed induction generator (DFIG), and the permanent magnet generator (PMG). To examine the effects of these WTGs on a power system with regard to its stability under different operating conditions, a selected synchronous generator (SG) of the well-known Western Electricity Coordinating Council (WECC three-unit nine-bus system and an eight-unit 24-bus system is replaced in turn by each type of WTG with the same capacity. The performances of the power system in response to the disturbances are then systematically compared. Specifically, the following comparisons are undertaken: (1) performances of the power system before and after the integration of the WTGs; and (2) performances of the power system and the associated consequences when the SCIG, DFIG, or PMG are separately connected to the system. These stability case studies utilize both eigenvalue analysis and dynamic time-domain simulation methods.
Resumo:
This study implemented linear and nonlinear methods of measuring variability to determine differences in stability of two groups of skilled (n = 10) and unskilled (n = 10) participants performing 3m forward/backward shuttle agility drill. We also determined whether stability measures differed between the forward and backward segments of the drill. Finally, we sought to investigate whether local dynamic stability, measured using largest finite-time Lyapunov exponents, changed from distal to proximal lower extremity segments. Three-dimensional coordinates of five lower extremity markers data were recorded. Results revealed that the Lyapunov exponents were lower (P < 0.05) for skilled participants at all joint markers indicative of higher levels of local dynamic stability. Additionally, stability of motion did not differ between forward and backward segments of the drill (P > 0.05), signifying that almost the same control strategy was used in forward and backward directions by all participants, regardless of skill level. Furthermore, local dynamic stability increased from distal to proximal joints (P < 0.05) indicating that stability of proximal segments are prioritized by the neuromuscular control system. Finally, skilled participants displayed greater foot placement standard deviation values (P < 0.05), indicative of adaptation to task constraints. The results of this study provide new methods for sport scientists, coaches to characterize stability in agility drill performance.
Resumo:
Load modelling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is parametric sensitivity analysis. A composite load model-based load sensitivity analysis framework is proposed. It enables comprehensive investigation into load modelling impacts on system stability considering the dynamic interactions between load and system dynamics. The effect of the location of individual as well as patches of composite loads in the vicinity on the sensitivity of the oscillatory modes is investigated. The impact of load composition on the overall sensitivity of the load is also investigated.
Resumo:
Load modeling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is through parametric sensitivity analysis. Load ranking provides an effective measure of such impact. Traditionally, load ranking is based on either static or dynamic load model alone. In this paper, composite load model based load ranking framework is proposed. It enables comprehensive investigation into load modeling impacts on system stability considering the dynamic interactions between load and system dynamics. The impact of load composition on the overall sensitivity and therefore on ranking of the load is also investigated. Dynamic simulations are performed to further elucidate the results obtained through sensitivity based load ranking approach.
Resumo:
This paper focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the active power and the DC capacitor voltage control of the Doubly Fed Induction Generator (DFIG) based wind generator. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings of the DFIG system is also investigated. The results of the time domain simulation studies are presented to elucidate the effectiveness of the TS-fuzzy controller compared with conventional PI controller in the DFIG system. The proposed TS-fuzzy controller can improve the fault ride through capability of DFIG compared to the conventional PI controller
Resumo:
In this contribution, a stability analysis for a dynamic voltage restorer (DVR) connected to a weak ac system containing a dynamic load is presented using continuation techniques and bifurcation theory. The system dynamics are explored through the continuation of periodic solutions of the associated dynamic equations. The switching process in the DVR converter is taken into account to trace the stability regions through a suitable mathematical representation of the DVR converter. The stability regions in the Thevenin equivalent plane are computed. In addition, the stability regions in the control gains space, as well as the contour lines for different Floquet multipliers, are computed. Besides, the DVR converter model employed in this contribution avoids the necessity of developing very complicated iterative map approaches as in the conventional bifurcation analysis of converters. The continuation method and the DVR model can take into account dynamics and nonlinear loads and any network topology since the analysis is carried out directly from the state space equations. The bifurcation approach is shown to be both computationally efficient and robust, since it eliminates the need for numerically critical and long-lasting transient simulations.
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.
Resumo:
This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an unnormalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author's knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.
Resumo:
With the increase in the level of global warming, renewable energy based distributed generators (DGs) will increasingly play a dominant role in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cells and micro turbines will gain considerable momentum in the near future. A microgrid consists of clusters of load and distributed generators that operate as a single controllable system. The interconnection of the DG to the utility/grid through power electronic converters has raised concern about safe operation and protection of the equipments. Many innovative control techniques have been used for enhancing the stability of microgrid as for proper load sharing. The most common method is the use of droop characteristics for decentralized load sharing. Parallel converters have been controlled to deliver desired real power (and reactive power) to the system. Local signals are used as feedback to control converters, since in a real system, the distance between the converters may make the inter-communication impractical. The real and reactive power sharing can be achieved by controlling two independent quantities, frequency and fundamental voltage magnitude. In this thesis, an angle droop controller is proposed to share power amongst converter interfaced DGs in a microgrid. As the angle of the output voltage can be changed instantaneously in a voltage source converter (VSC), controlling the angle to control the real power is always beneficial for quick attainment of steady state. Thus in converter based DGs, load sharing can be performed by drooping the converter output voltage magnitude and its angle instead of frequency. The angle control results in much lesser frequency variation compared to that with frequency droop. An enhanced frequency droop controller is proposed for better dynamic response and smooth transition between grid connected and islanded modes of operation. A modular controller structure with modified control loop is proposed for better load sharing between the parallel connected converters in a distributed generation system. Moreover, a method for smooth transition between grid connected and islanded modes is proposed. Power quality enhanced operation of a microgrid in presence of unbalanced and non-linear loads is also addressed in which the DGs act as compensators. The compensator can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid A frequency and voltage isolation technique between microgrid and utility is proposed by using a back-to-back converter. As utility and microgrid are totally isolated, the voltage or frequency fluctuations in the utility side do not affect the microgrid loads and vice versa. Another advantage of this scheme is that a bidirectional regulated power flow can be achieved by the back-to-back converter structure. For accurate load sharing, the droop gains have to be high, which has the potential of making the system unstable. Therefore the choice of droop gains is often a tradeoff between power sharing and stability. To improve this situation, a supplementary droop controller is proposed. A small signal model of the system is developed, based on which the parameters of the supplementary controller are designed. Two methods are proposed for load sharing in an autonomous microgrid in rural network with high R/X ratio lines. The first method proposes power sharing without any communication between the DGs. The feedback quantities and the gain matrixes are transformed with a transformation matrix based on the line R/X ratio. The second method involves minimal communication among the DGs. The converter output voltage angle reference is modified based on the active and reactive power flow in the line connected at point of common coupling (PCC). It is shown that a more economical and proper power sharing solution is possible with the web based communication of the power flow quantities. All the proposed methods are verified through PSCAD simulations. The converters are modeled with IGBT switches and anti parallel diodes with associated snubber circuits. All the rotating machines are modeled in detail including their dynamics.
Resumo:
Power system dynamic analysis and security assessment are becoming more significant today due to increases in size and complexity from restructuring, emerging new uncertainties, integration of renewable energy sources, distributed generation, and micro grids. Precise modelling of all contributed elements/devices, understanding interactions in detail, and observing hidden dynamics using existing analysis tools/theorems are difficult, and even impossible. In this chapter, the power system is considered as a continuum and the propagated electomechanical waves initiated by faults and other random events are studied to provide a new scheme for stability investigation of a large dimensional system. For this purpose, the measured electrical indices (such as rotor angle and bus voltage) following a fault in different points among the network are used, and the behaviour of the propagated waves through the lines, nodes, and buses is analyzed. The impact of weak transmission links on a progressive electromechanical wave using energy function concept is addressed. It is also emphasized that determining severity of a disturbance/contingency accurately, without considering the related electromechanical waves, hidden dynamics, and their properties is not secure enough. Considering these phenomena takes heavy and time consuming calculation, which is not suitable for online stability assessment problems. However, using a continuum model for a power system reduces the burden of complex calculations
Resumo:
This paper focuses on the implementation of a damping controller for the doubly fed induction generator (DFIG) system. Coordinated tuning of the damping controller to enhance the damping of the oscillatory modes is presented using bacterial foraging technique. The effect of the tuned damping controller on converter ratings of the DFIG system is also investigated. The results of both eigenvalue analysis and the time-domain simulation studies are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The improvement of the fault ride-through capability of the system is also demonstrated.
Resumo:
To ensure the small-signal stability of a power system, power system stabilizers (PSSs) are extensively applied for damping low frequency power oscillations through modulating the excitation supplied to synchronous machines, and increasing interest has been focused on developing different PSS schemes to tackle the threat of damping oscillations to power system stability. This paper examines four different PSS models and investigates their performances on damping power system dynamics using both small-signal eigenvalue analysis and large-signal dynamic simulations. The four kinds of PSSs examined include the Conventional PSS (CPSS), Single Neuron based PSS (SNPSS), Adaptive PSS (APSS) and Multi-band PSS (MBPSS). A steep descent parameter optimization algorithm is employed to seek the optimal PSS design parameters. To evaluate the effects of these PSSs on improving power system dynamic behaviors, case studies are carried out on an 8-unit 24-bus power system through both small-signal eigenvalue analysis and large-signal time-domain simulations.
Resumo:
This paper proposes a new approach for state estimation of angles and frequencies of equivalent areas in large power systems with synchronized phasor measurement units. Defining coherent generators and their correspondent areas, generators are aggregated and system reduction is performed in each area of inter-connected power systems. The structure of the reduced system is obtained based on the characteristics of the reduced linear model and measurement data to form the non-linear model of the reduced system. Then a Kalman estimator is designed for the reduced system to provide an equivalent dynamic system state estimation using the synchronized phasor measurement data. The method is simulated on two test systems to evaluate the feasibility of the proposed method.