2 resultados para Driveways.

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to estimate the safety impact of roadway interventions engineers need to collect, analyze, and interpret the results of carefully implemented data collection efforts. The intent of these studies is to develop Accident Modification Factors (AMF's), which are used to predict the safety impact of various road safety features at other locations or in upon future enhancements. Models are typically estimated to estimate AMF's for total crashes, but can and should be estimated for crash outcomes as well. This paper first describes data collected with the intent estimate AMF's for rural intersections in the state of Georgia within the United Sates. Modeling results of crash prediction models for the crash outcomes: angle, head-on, rear-end, sideswipe (same direction and opposite direction) and pedestrian-involved crashes are then presented and discussed. The analysis reveals that factors such as the Annual Average Daily Traffic (AADT), the presence of turning lanes, and the number of driveways have a positive association with each type of crash, while the median width and the presence of lighting are negatively associated with crashes. The model covariates are related to crash outcome in different ways, suggesting that crash outcomes are associated with different pre-crash conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.