3 resultados para Domingo de Silos, Santo
em Queensland University of Technology - ePrints Archive
Resumo:
Patient safety has become a significant and pressing policy issue. Around the world, governments, the health care sector and the public are increasingly cognizant of the need to improve the safety of care delivered by their health systems. Pressure for change has been created by highly publicized incidents in a number of countries involving unsafe acts that were significant both in scale and consequence and a number of empirical studies that revealed the high rates of unsafe acts and their consequences. The costs of unsafe health care – both personal and fiscal – to individuals, their families and their communities and to the state are massive. In this research project we explored one particular avenue for change – that is, the use of legal instruments by governments to improve patient safety. We did this through a comparative review of the use of legal instruments or frameworks in other countries (specifically Australia, Denmark, New Zealand, the United Kingdom, and the United States) as well as two non-health care related sectors in Canada (transportation and occupational health and safety). We began this research by reviewing the legal instruments and undertaking extensive literature reviews. Further information was gathered through in-person interviews with policy-makers and academics in the countries studied, and from policy-makers and academics expert in the health, occupational health and safety, and transportation sectors in Canada. Once descriptions of the various countries and sectors were drafted, we held small-group meetings with local experts on particular aspects of patient safety. We then hosted a national consultation meeting. We subsequently drafted this final report and the appendices, which fully describe the results of the background research. Finally, we prepared a summary version of the report as well as posters and papers to be published and delivered at conferences and meetings with relevant groups.
Resumo:
The aim of this study was to examine the actions of geographically dispersed process stakeholders (doctors, community pharmacists and RACFs) in order to cope with the information silos that exist within and across different settings. The study setting involved three metropolitan RACFs in Sydney, Australia and employed a qualitative approach using semi-structured interviews, non-participant observations and artefact analysis. Findings showed that medication information was stored in silos which required specific actions by each setting to translate this information to fit their local requirements. A salient example of this was the way in which community pharmacists used the RACF medication charts to prepare residents' pharmaceutical records. This translation of medication information across settings was often accompanied by telephone or face-to-face conversations to cross-check, validate or obtain new information. Findings highlighted that technological interventions that work in silos can negatively impact the quality of medication management processes in RACF settings. The implementation of commercial software applications like electronic medication charts need to be appropriately integrated to satisfy the collaborative information requirements of the RACF medication process.
Resumo:
The phosphine distribution in a cylindrical silo containing grain is predicted. A three-dimensional mathematical model, which accounts for multicomponent gas phase transport and the sorption of phosphine into the grain kernel is developed. In addition, a simple model is presented to describe the death of insects within the grain as a function of their exposure to phosphine gas. The proposed model is solved using the commercially available computational fluid dynamics (CFD) software, FLUENT, together with our own C code to customize the solver in order to incorporate the models for sorption and insect extinction. Two types of fumigation delivery are studied, namely, fan- forced from the base of the silo and tablet from the top of the silo. An analysis of the predicted phosphine distribution shows that during fan forced fumigation, the position of the leaky area is very important to the development of the gas flow field and the phosphine distribution in the silo. If the leak is in the lower section of the silo, insects that exist near the top of the silo may not be eradicated. However, the position of a leak does not affect phosphine distribution during tablet fumigation. For such fumigation in a typical silo configuration, phosphine concentrations remain low near the base of the silo. Furthermore, we find that half-life pressure test readings are not an indicator of phosphine distribution during tablet fumigation.