403 resultados para Direct measurement

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knee forces and moments estimated by inverse dynamics and directly measured by a multiaxial transducer were compared during the gait of a transfemoral amputee. The estimated and directly measured forces and moments were relatively close. However, 3D inverse dynamics estimated only partially the forces and moments associated with the deformation of the prosthetic foot and locking of knee mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The understanding of the loads generated within the prosthetic leg can aid engineers in the design of components and clinicians in the process of rehabilitation. Traditional methods to assess these loads have relied on inverse dynamics. This indirect method estimates the applied load using video recordings and force-plates located at a distance from the region of interest, such as the base of the residuum. The well-known limitations of this method are related to the accuracy of this recursive model and the experimental conditions required (Frossard et al., 2003). Recent developments in sensors (Frossard et al., 2003) and prosthetic fixation (Brånemark et al., 2000) permit the direct measurement of the loads applied on the residuum of transfemoral amputees. In principle, direct measurement should be an appropriate tool for assessing the accuracy of inverse dynamics. The purpose of this paper is to determine the validity of this assumption. The comparative variable used in this study is the velocity of the relative body center of mass (VCOM(t)). The relativity is used to align the static (w.r.t. position) force plate measurement with the dynamic load cell measurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The understanding of the load applied on the residuum through the prosthesis of individuals with transfemoral amputation (TFA) is essential to address a number of concerns that could strongly reduce their quality of life (e.g., residuum skin lesion, prosthesis fitting, alignment). This inner prosthesis loading could be estimated using a typical gait laboratory relying on inverse dynamics equations. Alternative, technological advances proposed over the last decade enabled direct measurement of this kinetic information in a broad variety of situations that could potentially be more relevant in clinical settings. The purposes of this presentation are (A) to review the literature about recent developments in measure and analyses of inner prosthesis loading of TFA, and (B) to extract information that could potentially contribute to a better evidence-based practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand for an evidence-based clinical practice involving lower limb amputees is increasing. Some of the critical care decisions are related to the loading applied on the residuum partially responsible for comfort and functional outcome. This loading can be assessed using inverse dynamics equations. Typically, this method requires a gait laboratory (e.g., 3D motion analysis system, force-plates). It is mainly suited for the analysis only few steps of walking while being expensive and labour intensive. However, recent scientific and industrial developments demonstrated that discrete and light portable sensors can be placed within the prosthesis to measure accurately the loading during an unlimited number of steps and activities of daily living. Several studies indicated that method based on direct measurements might provide more realistic results. Furthermore, it is a user-friendly method more accessible to clinicians, such as prosthetists. The purpose of this symposium will be to give an overview of these additional opportunities for clinicians to obtain relevant data for evidence-based practice. The three main aims will be: • To present some of the equipment used for direct measurements, • To propose ways to analyse some key data sets, • To give some practical example of data sets for transtibial and transfemoral amputees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To strive to improve the rehabilitation program of individuals with transfemoral amputation fitted with bone-anchored prosthesis based on data from direct measurements of the load applied on the residuum we first of all need to understand the load applied on the fixation. Therefore the load applied on the residuum was first directly measured during standardized activities of daily living such as straight line level walking, ascending and descending stairs and a ramp and walking around a circle. From measuring the load in standardized activities of daily living the load was also measured during different phases of the rehabilitation program such as during walking with walking aids and during load bearing exercises.[1-15] The rehabilitation program for individuals with a transfemoral amputation fitted with an OPRA implant relies on a combination of dynamic and static load bearing exercises.[16-20] This presentation will focus on the study of a set of experimental static load bearing exercises. [1] A group of eleven individuals with unilateral transfemoral amputation fitted with an OPRA implant participated in this study. The load on the implant during the static load bearing exercises was measured using a portable system including a commercial transducer embedded in a short pylon, a laptop and a customized software package. This apparatus was previously shown effective in a proof-of-concept study published by Prof. Frossard. [1-9] The analysis of the static load bearing exercises included an analysis of the reliability as well as the loading compliance. The analysis of the loading reliability showed a high reliability between the loading sessions indicating a correct repetition of the LBE by the participants. [1, 5] The analysis of the loading compliance showed a significant lack of axial compliance leading to a systematic underloading of the long axis of the implant during the proposed experimental static LBE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The purpose of this presentation is to outline the relevance of the categorization of the load regime data to assess the functional output and usage of the prosthesis of lower limb amputees. The objectives are • To highlight the need for categorisation of activities of daily living • To present a categorization of load regime applied on residuum, • To present some descriptors of the four types of activity that could be detected, • To provide an example the results for a case. Methods The load applied on the osseointegrated fixation of one transfemoral amputee was recorded using a portable kinetic system for 5 hours. The load applied on the residuum was divided in four types of activities corresponding to inactivity, stationary loading, localized locomotion and directional locomotion as detailed in previously publications. Results The periods of directional locomotion, localized locomotion, and stationary loading occurred 44%, 34%, and 22% of recording time and each accounted for 51%, 38%, and 12% of the duration of the periods of activity, respectively. The absolute maximum force during directional locomotion, localized locomotion, and stationary loading was 19%, 15%, and 8% of the body weight on the anteroposterior axis, 20%, 19%, and 12% on the mediolateral axis, and 121%, 106%, and 99% on the long axis. A total of 2,783 gait cycles were recorded. Discussion Approximately 10% more gait cycles and 50% more of the total impulse than conventional analyses were identified. The proposed categorization and apparatus have the potential to complement conventional instruments, particularly for difficult cases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The importance of applying unsaturated soil mechanics to geotechnical engineering design has been well understood. However, the consumption of time and the necessity for a specific laboratory testing apparatus when measuring unsaturated soil properties have limited the application of unsaturated soil mechanics theories in practice. Although methods for predicting unsaturated soil properties have been developed, the verification of these methods for a wide range of soil types is required in order to increase the confidence of practicing engineers in using these methods. In this study, a new permeameter was developed to measure the hydraulic conductivity of unsaturated soils using the steady-state method and directly measured suction (negative pore-water pressure) values. The apparatus is instrumented with two tensiometers for the direct measurement of suction during the tests. The apparatus can be used to obtain the hydraulic conductivity function of sandy soil over a low suction range (0-10 kPa). Firstly, the repeatability of the unsaturated hydraulic conductivity measurement, using the new permeameter, was verified by conducting tests on two identical sandy soil specimens and obtaining similar results. The hydraulic conductivity functions of the two sandy soils were then measured during the drying and wetting processes of the soils. A significant hysteresis was observed when the hydraulic conductivity was plotted against the suction. However, the hysteresis effects were not apparent when the conductivity was plotted against the volumetric water content. Furthermore, the measured unsaturated hydraulic conductivity functions were compared with predictions using three different predictive methods that are widely incorporated into numerical software. The results suggest that these predictive methods are capable of capturing the measured behavior with reasonable agreement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concern regarding the health effects of indoor air quality has grown in recent years, due to the increased prevalence of many diseases, as well as the fact that many people now spend most of their time indoors. While numerous studies have reported on the dynamics of aerosols indoors, the dynamics of bioaerosols in indoor environments are still poorly understood and very few studies have focused on fungal spore dynamics in indoor environments. Consequently, this work investigated the dynamics of fungal spores in indoor air, including fungal spore release and deposition, as well as investigating the mechanisms involved in the fungal spore fragmentation process. In relation to the investigation of fungal spore dynamics, it was found that the deposition rates of the bioaerosols (fungal propagules) were in the same range as the deposition rates of nonbiological particles and that they were a function of their aerodynamic diameters. It was also found that fungal particle deposition rates increased with increasing ventilation rates. These results (which are reported for the first time) are important for developing an understanding of the dynamics of fungal spores in the air. In relation to the process of fungal spore fragmentation, important information was generated concerning the airborne dynamics of the spores, as well as the part/s of the fungi which undergo fragmentation. The results obtained from these investigations into the dynamics of fungal propagules in indoor air significantly advance knowledge about the fate of fungal propagules in indoor air, as well as their deposition in the respiratory tract. The need to develop an advanced, real-time method for monitoring bioaerosols has become increasingly important in recent years, particularly as a result of the increased threat from biological weapons and bioterrorism. However, to date, the Ultraviolet Aerodynamic Particle Sizer (UVAPS, Model 3312, TSI, St Paul, MN) is the only commercially available instrument capable of monitoring and measuring viable airborne micro-organisms in real-time. Therefore (for the first time), this work also investigated the ability of the UVAPS to measure and characterise fungal spores in indoor air. The UVAPS was found to be sufficiently sensitive for detecting and measuring fungal propagules. Based on fungal spore size distributions, together with fluorescent percentages and intensities, it was also found to be capable of discriminating between two fungal spore species, under controlled laboratory conditions. In the field, however, it would not be possible to use the UVAPS to differentiate between different fungal spore species because the different micro-organisms present in the air may not only vary in age, but may have also been subjected to different environmental conditions. In addition, while the real-time UVAPS was found to be a good tool for the investigation of fungal particles under controlled conditions, it was not found to be selective for bioaerosols only (as per design specifications). In conclusion, the UVAPS is not recommended for use in the direct measurement of airborne viable bioaerosols in the field, including fungal particles, and further investigations into the nature of the micro-organisms, the UVAPS itself and/or its use in conjunction with other conventional biosamplers, are necessary in order to obtain more realistic results. Overall, the results obtained from this work on airborne fungal particle dynamics will contribute towards improving the detection capabilities of the UVAPS, so that it is capable of selectively monitoring and measuring bioaerosols, for which it was originally designed. This work will assist in finding and/or improving other technologies capable of the real-time monitoring of bioaerosols. The knowledge obtained from this work will also be of benefit in various other bioaerosol applications, such as understanding the transport of bioaerosols indoors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Chronic disease presents overwhelming challenges to elderly patients, their families, health care providers and the health care system. The aim of this study was to explore a theoretical model for effective management of chronic diseases, especially type 2 diabetes mellitus and/or cardiovascular disease. The assumed theoretical model considered the connections between physical function, mental health, social support and health behaviours. The study effort was to improve the quality of life for people with chronic diseases, especially type 2 diabetes and/or cardiovascular disease and to reduce health costs. Methods: A cross-sectional post questionnaire survey was conducted in early 2009 from a randomised sample of Australians aged 50 to 80 years. A total of 732 subjects were eligible for analysis. Firstly, factors influencing respondents‘ quality of life were investigated through bivariate and multivariate regression analysis. Secondly, the Theory of Planned Behaviour (TPB) model for regular physical activity, healthy eating and medication adherence behaviours was tested for all relevant respondents using regression analysis. Thirdly, TPB variable differences between respondents who have diabetes and/or cardiovascular disease and those without these diseases were compared. Finally, the TPB model for three behaviours including regular physical activity, healthy eating and medication adherence were tested in respondents with diabetes and/or cardiovascular diseases using Structure Equation Modelling (SEM). Results: This was the first study combining the three behaviours using a TPB model, while testing the influence of extra variables on the TPB model in one study. The results of this study provided evidence that the ageing process was a cumulative effect of biological change, socio-economic environment and lifelong behaviours. Health behaviours, especially physical activity and healthy eating were important modifiable factors influencing respondents‘ quality of life. Since over 80% of the respondents had at least one chronic disease, it was important to consider supporting older people‘s chronic disease self-management skills such as healthy diet, regular physical activity and medication adherence to improve their quality of life. Direct measurement of the TPB model was helpful in understanding respondents‘ intention and behaviour toward physical activity, healthy eating and medication adherence. In respondents with diabetes and/or cardiovascular disease, the TPB model predicted different proportions of intention toward three different health behaviours with 39% intending to engage in physical activity, 49% intending to engage in healthy eating and 47% intending to comply with medication adherence. Perceived behavioural control, which was proven to be the same as self-efficacy in measurement in this study, played an important role in predicting intention towards the three health behaviours. Also social norms played a slightly more important role than attitude for physical activity and medication adherence, while attitude and social norms had similar effects on healthy eating in respondents with diabetes and/or cardiovascular disease. Both perceived behavioural control and intention directly predicted recent actual behaviours. Physical activity was more a volitional control behaviour than healthy eating and medication adherence. Step by step goal setting and motivation was more important for physical activity, while accessibility, resources and other social environmental factors were necessary for improving healthy eating and medication adherence. The extra variables of age, waist circumference, health related quality of life and depression indirectly influenced intention towards the three behaviours mainly mediated through attitude and perceived behavioural control. Depression was a serious health problem that reduced the three health behaviours‘ motivation, mediated through decreased self-efficacy and negative attitude. This research provided evidence that self-efficacy is similar to perceived behavioural control in the TPB model and intention is a proximal goal toward a particular behaviour. Combining four sources of information in the self-efficacy model with the TPB model would improve chronic disease patients‘ self management behaviour and reach an improved long-term treatment outcome. Conclusion: Health intervention programs that target chronic disease management should focus on patients‘ self-efficacy. A holistic approach which is patient-centred and involves a multidisciplinary collaboration strategy would be effective. Supporting the socio-economic environment and the mental/ emotional environment for older people needs to be considered within an integrated health care system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study is to assess the potential use of Bluetooth data for traffic monitoring of arterial road networks. Bluetooth data provides the direct measurement of travel time between pairs of scanners, and intensive research has been reported on this topic. Bluetooth data includes “Duration” data, which represents the time spent by Bluetooth devices to pass through the detection range of Bluetooth scanners. If the scanners are located at signalised intersections, this Duration can be related to intersection performance, and hence represents valuable information for traffic monitoring. However the use of Duration has been ignored in previous analyses. In this study, the Duration data as well as travel time data is analysed to capture the traffic condition of a main arterial route in Brisbane. The data consists of one week of Bluetooth data provided by Brisbane City Council. As well, micro simulation analysis is conducted to further investigate the properties of Duration. The results reveal characteristics of Duration, and address future research needs to utilise this valuable data source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

None of currently used tonometers produce estimated IOP values that are free of errors. Measurement incredibility arises from indirect measurement of corneal deformation and the fact that pressure calculations are based on population averaged parameters of anterior segment. Reliable IOP values are crucial for understanding and monitoring of number of eye pathologies e.g. glaucoma. We have combined high speed swept source OCT with air-puff chamber. System provides direct measurement of deformation of cornea and anterior surface of the lens. This paper describes in details the performance of air-puff ssOCT instrument. We present different approaches of data presentation and analysis. Changes in deformation amplitude appears to be good indicator of IOP changes. However, it seems that in order to provide accurate intraocular pressure values an additional information on corneal biomechanics is necessary. We believe that such information could be extracted from data provided by air-puff ssOCT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exogenous prostacyclin is effective in reducing pulmonary vascular resistance in some forms of human pulmonary hypertension (PH). To explore whether endogenous prostaglandins played a similar role in pulmonary hypertension, we examined the effect of deleting cyclooxygenase (COX)-gene isoforms in a chronic hypoxia model of PH. Pulmonary hypertension, examined by direct measurement of right ventricular end systolic pressure (RVESP), right ventricular hypertrophy (n = 8), and hematocrit (n = 3), was induced by 3 weeks of hypobarichypoxia in wild-type and COX-knockout (KO) mice. RVESP was increased in wild-type hypoxic mice compared with normoxic controls (24.4 ± 1.4 versus 13.8 ± 1.9 mm Hg; n = 8; p < 0.05). COX-2 KO mice showed a greater increase in RVESP following hypoxia (36.8 ± 2.7 mm Hg; p < 0.05). Urinary thromboxane (TX)B2 excretion increased following hypoxia (44.6 ± 11.1 versus 14.7 ± 1.8 ng/ml; n = 6; p < 0.05), an effect that was exacerbated by COX-2 gene disruption (54.5 ± 10.8 ng/ml; n = 6). In contrast, the increase in 6-keto-prostacyclin1α excretion following hypoxia was reduced by COX-2 gene disruption (29 ± 3 versus 52 ± 4.6 ng/ml; p < 0.01). Tail cut bleed times were lower following hypoxia, and there was evidence of intravascular thrombosis in lung vessels that was exacerbated by disruption of COX-2 and reduced by deletion of COX-1. The TXA2/endoperoxide receptor antagonist ifetroban (50 mg/kg/day) offset the effect of deleting the COX-2 gene, attenuating the hypoxia-induced rise in RVESP and intravascular thrombosis. COX-2 gene deletion exacerbates pulmonary hypertension, enhances sensitivity to TXA2, and induces intravascular thrombosis in response to hypoxia. The data provide evidence that endogenous prostaglandins modulate the pulmonary response to hypoxia. Copyright © 2008 by The American Society for Pharmacology and Experimental Therapeutics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Foot plantar fascia is an important foot tissue in stabilizing the longitudinal arch of human foot. Direct measurement to monitor the mechanical situation of plantar fascia at human locomotion is difficult. The purpose of this study was to construct a three-dimensional finite element model of the foot to calculate the internal stress/strain value of plantar fascia during different stage of gait. The simulated stress distribution of plantar fascia was the lowest at heel-strike, which concentrated on the medial side of calcaneal tubercle. The peak stress of plantar fascia was appeared at push-off, and the value is more than 5 times of the heel-strike position. Current FE model was able to explore the plantar fascia tension trend at the main sub-phases of foot. More detailed fascia model and intrinsic muscle forces could be developed in the further study.