716 resultados para Detection models
em Queensland University of Technology - ePrints Archive
Resumo:
Cognitive radio is an emerging technology proposing the concept of dynamic spec- trum access as a solution to the looming problem of spectrum scarcity caused by the growth in wireless communication systems. Under the proposed concept, non- licensed, secondary users (SU) can access spectrum owned by licensed, primary users (PU) so long as interference to PU are kept minimal. Spectrum sensing is a crucial task in cognitive radio whereby the SU senses the spectrum to detect the presence or absence of any PU signal. Conventional spectrum sensing assumes the PU signal as ‘stationary’ and remains in the same activity state during the sensing cycle, while an emerging trend models PU as ‘non-stationary’ and undergoes state changes. Existing studies have focused on non-stationary PU during the transmission period, however very little research considered the impact on spectrum sensing when the PU is non-stationary during the sensing period. The concept of PU duty cycle is developed as a tool to analyse the performance of spectrum sensing detectors when detecting non-stationary PU signals. New detectors are also proposed to optimise detection with respect to duty cycle ex- hibited by the PU. This research consists of two major investigations. The first stage investigates the impact of duty cycle on the performance of existing detec- tors and the extent of the problem in existing studies. The second stage develops new detection models and frameworks to ensure the integrity of spectrum sensing when detecting non-stationary PU signals. The first investigation demonstrates that conventional signal model formulated for stationary PU does not accurately reflect the behaviour of a non-stationary PU. Therefore the performance calculated and assumed to be achievable by the conventional detector does not reflect actual performance achieved. Through analysing the statistical properties of duty cycle, performance degradation is proved to be a problem that cannot be easily neglected in existing sensing studies when PU is modelled as non-stationary. The second investigation presents detectors that are aware of the duty cycle ex- hibited by a non-stationary PU. A two stage detection model is proposed to improve the detection performance and robustness to changes in duty cycle. This detector is most suitable for applications that require long sensing periods. A second detector, the duty cycle based energy detector is formulated by integrat- ing the distribution of duty cycle into the test statistic of the energy detector and suitable for short sensing periods. The decision threshold is optimised with respect to the traffic model of the PU, hence the proposed detector can calculate average detection performance that reflect realistic results. A detection framework for the application of spectrum sensing optimisation is proposed to provide clear guidance on the constraints on sensing and detection model. Following this framework will ensure the signal model accurately reflects practical behaviour while the detection model implemented is also suitable for the desired detection assumption. Based on this framework, a spectrum sensing optimisation algorithm is further developed to maximise the sensing efficiency for non-stationary PU. New optimisation constraints are derived to account for any PU state changes within the sensing cycle while implementing the proposed duty cycle based detector.
Resumo:
This paper examines the case of a procurement auction for a single project, in which the breakdown of the winning bid into its component items determines the value of payments subsequently made to bidder as the work progresses. Unbalanced bidding, or bid skewing, involves the uneven distribution of mark-up among the component items in such a way as to attempt to derive increased benefit to the unbalancer but without involving any change in the total bid. One form of unbalanced bidding for example, termed Front Loading (FL), is thought to be widespread in practice. This involves overpricing the work items that occur early in the project and underpricing the work items that occur later in the project in order to enhance the bidder's cash flow. Naturally, auctioners attempt to protect themselves from the effects of unbalancing—typically reserving the right to reject a bid that has been detected as unbalanced. As a result, models have been developed to both unbalance bids and detect unbalanced bids but virtually nothing is known of their use, success or otherwise. This is of particular concern for the detection methods as, without testing, there is no way of knowing the extent to which unbalanced bids are remaining undetected or balanced bids are being falsely detected as unbalanced. This paper reports on a simulation study aimed at demonstrating the likely effects of unbalanced bid detection models in a deterministic environment involving FL unbalancing in a Texas DOT detection setting, in which bids are deemed to be unbalanced if an item exceeds a maximum (or fails to reach a minimum) ‘cut-off’ value determined by the Texas method. A proportion of bids are automatically and maximally unbalanced over a long series of simulated contract projects and the profits and detection rates of both the balancers and unbalancers are compared. The results show that, as expected, the balanced bids are often incorrectly detected as unbalanced, with the rate of (mis)detection increasing with the proportion of FL bidders in the auction. It is also shown that, while the profit for balanced bidders remains the same irrespective of the number of FL bidders involved, the FL bidder's profit increases with the greater proportion of FL bidders present in the auction. Sensitivity tests show the results to be generally robust, with (mis)detection rates increasing further when there are fewer bidders in the auction and when more data are averaged to determine the baseline value, but being smaller or larger with increased cut-off values and increased cost and estimate variability depending on the number of FL bidders involved. The FL bidder's expected benefit from unbalancing, on the other hand, increases, when there are fewer bidders in the auction. It also increases when the cut-off rate and discount rate is increased, when there is less variability in the costs and their estimates, and when less data are used in setting the baseline values.
Resumo:
We propose a multi-layer spectrum sensing optimisation algorithm to maximise sensing efficiency by computing the optimal sensing and transmission durations for a fast changing, dynamic primary user. Dynamic primary user traffic is modelled as a random process, where the primary user changes states during both the sensing period and transmission period to reflect a more realistic scenario. Furthermore, we formulate joint constraints to correctly reflect interference to the primary user and lost opportunity of the secondary user during the transmission period. Finally, we implement a novel duty cycle based detector that is optimised with respect to PU traffic to accurately detect primary user activity during the sensing period. Simulation results show that unlike currently used detection models, the proposed algorithm can jointly optimise the sensing and transmission durations to simultaneously satisfy the optimisation constraints for the considered primary user traffic.
Resumo:
The article focuses on how the information seeker makes decisions about relevance. It will employ a novel decision theory based on quantum probabilities. This direction derives from mounting research within the field of cognitive science showing that decision theory based on quantum probabilities is superior to modelling human judgements than standard probability models [2, 1]. By quantum probabilities, we mean decision event space is modelled as vector space rather than the usual Boolean algebra of sets. In this way,incompatible perspectives around a decision can be modelled leading to an interference term which modifies the law of total probability. The interference term is crucial in modifying the probability judgements made by current probabilistic systems so they align better with human judgement. The goal of this article is thus to model the information seeker user as a decision maker. For this purpose, signal detection models will be sketched which are in principle applicable in a wide variety of information seeking scenarios.
Resumo:
Spoken term detection (STD) popularly involves performing word or sub-word level speech recognition and indexing the result. This work challenges the assumption that improved speech recognition accuracy implies better indexing for STD. Using an index derived from phone lattices, this paper examines the effect of language model selection on the relationship between phone recognition accuracy and STD accuracy. Results suggest that language models usually improve phone recognition accuracy but their inclusion does not always translate to improved STD accuracy. The findings suggest that using phone recognition accuracy to measure the quality of an STD index can be problematic, and highlight the need for an alternative that is more closely aligned with the goals of the specific detection task.
Resumo:
Business process model repositories capture precious knowledge about an organization or a business domain. In many cases, these repositories contain hundreds or even thousands of models and they represent several man-years of effort. Over time, process model repositories tend to accumulate duplicate fragments, as new process models are created by copying and merging fragments from other models. This calls for methods to detect duplicate fragments in process models that can be refactored as separate subprocesses in order to increase readability and maintainability. This paper presents an indexing structure to support the fast detection of clones in large process model repositories. Experiments show that the algorithm scales to repositories with hundreds of models. The experimental results also show that a significant number of non-trivial clones can be found in process model repositories taken from industrial practice.
Resumo:
In automatic facial expression detection, very accurate registration is desired which can be achieved via a deformable model approach where a dense mesh of 60-70 points on the face is used, such as an active appearance model (AAM). However, for applications where manually labeling frames is prohibitive, AAMs do not work well as they do not generalize well to unseen subjects. As such, a more coarse approach is taken for person-independent facial expression detection, where just a couple of key features (such as face and eyes) are tracked using a Viola-Jones type approach. The tracked image is normally post-processed to encode for shift and illumination invariance using a linear bank of filters. Recently, it was shown that this preprocessing step is of no benefit when close to ideal registration has been obtained. In this paper, we present a system based on the Constrained Local Model (CLM) which is a generic or person-independent face alignment algorithm which gains high accuracy. We show these results against the LBP feature extraction on the CK+ and GEMEP datasets.
Resumo:
As organizations reach to higher levels of business process management maturity, they often find themselves maintaining repositories of hundreds or even thousands of process models, representing valuable knowledge about their operations. Over time, process model repositories tend to accumulate duplicate fragments (also called clones) as new process models are created or extended by copying and merging fragments from other models. This calls for methods to detect clones in process models, so that these clones can be refactored as separate subprocesses in order to improve maintainability. This paper presents an indexing structure to support the fast detection of clones in large process model repositories. The proposed index is based on a novel combination of a method for process model decomposition (specifically the Refined Process Structure Tree), with established graph canonization and string matching techniques. Experiments show that the algorithm scales to repositories with hundreds of models. The experimental results also show that a significant number of non-trivial clones can be found in process model repositories taken from industrial practice.
Resumo:
Evidence exists that repositories of business process models used in industrial practice contain significant amounts of duplication. This duplication may stem from the fact that the repository describes variants of the same pro- cesses and/or because of copy/pasting activity throughout the lifetime of the repository. Previous work has put forward techniques for identifying duplicate fragments (clones) that can be refactored into shared subprocesses. However, these techniques are limited to finding exact clones. This paper analyzes the prob- lem of approximate clone detection and puts forward two techniques for detecting clusters of approximate clones. Experiments show that the proposed techniques are able to accurately retrieve clusters of approximate clones that originate from copy/pasting followed by independent modifications to the copied fragments.
Resumo:
Background: Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult owing to species biology and behavioural characteristics. The design of robust sampling programmes should be based on an underlying statistical distribution that is sufficiently flexible to capture variations in the spatial distribution of the target species. Results: Comparisons are made of the accuracy of four probability-of-detection sampling models - the negative binomial model,1 the Poisson model,1 the double logarithmic model2 and the compound model3 - for detection of insects over a broad range of insect densities. Although the double log and negative binomial models performed well under specific conditions, it is shown that, of the four models examined, the compound model performed the best over a broad range of insect spatial distributions and densities. In particular, this model predicted well the number of samples required when insect density was high and clumped within experimental storages. Conclusions: This paper reinforces the need for effective sampling programs designed to detect insects over a broad range of spatial distributions. The compound model is robust over a broad range of insect densities and leads to substantial improvement in detection probabilities within highly variable systems such as grain storage.
Resumo:
The huge amount of CCTV footage available makes it very burdensome to process these videos manually through human operators. This has made automated processing of video footage through computer vision technologies necessary. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned ‘normal’ model. There is no precise and exact definition for an abnormal activity; it is dependent on the context of the scene. Hence there is a requirement for different feature sets to detect different kinds of abnormal activities. In this work we evaluate the performance of different state of the art features to detect the presence of the abnormal objects in the scene. These include optical flow vectors to detect motion related anomalies, textures of optical flow and image textures to detect the presence of abnormal objects. These extracted features in different combinations are modeled using different state of the art models such as Gaussian mixture model(GMM) and Semi- 2D Hidden Markov model(HMM) to analyse the performances. Further we apply perspective normalization to the extracted features to compensate for perspective distortion due to the distance between the camera and objects of consideration. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.
Resumo:
We propose a method for learning specific object representations that can be applied (and reused) in visual detection and identification tasks. A machine learning technique called Cartesian Genetic Programming (CGP) is used to create these models based on a series of images. Our research investigates how manipulation actions might allow for the development of better visual models and therefore better robot vision. This paper describes how visual object representations can be learned and improved by performing object manipulation actions, such as, poke, push and pick-up with a humanoid robot. The improvement can be measured and allows for the robot to select and perform the `right' action, i.e. the action with the best possible improvement of the detector.
Resumo:
An Approach with Vertical Guidance (APV) is an instrument approach procedure which provides horizontal and vertical guidance to a pilot on approach to landing in reduced visibility conditions. APV approaches can greatly reduce the safety risk to general aviation by improving the pilot’s situational awareness. In particular the incidence of Controlled Flight Into Terrain (CFIT) which has occurred in a number of fatal air crashes in general aviation over the past decade in Australia, can be reduced. APV approaches can also improve general aviation operations. If implemented at Australian airports, APV approach procedures are expected to bring a cost saving of millions of dollars to the economy due to fewer missed approaches, diversions and an increased safety benefit. The provision of accurate horizontal and vertical guidance is achievable using the Global Positioning System (GPS). Because aviation is a safety of life application, an aviation-certified GPS receiver must have integrity monitoring or augmentation to ensure that its navigation solution can be trusted. However, the difficulty with the current GPS satellite constellation alone meeting APV integrity requirements, the susceptibility of GPS to jamming or interference and the potential shortcomings of proposed augmentation solutions for Australia such as the Ground-based Regional Augmentation System (GRAS) justifies the investigation of Aircraft Based Augmentation Systems (ABAS) as an alternative integrity solution for general aviation. ABAS augments GPS with other sensors at the aircraft to help it meet the integrity requirements. Typical ABAS designs assume high quality inertial sensors to provide an accurate reference trajectory for Kalman filters. Unfortunately high-quality inertial sensors are too expensive for general aviation. In contrast to these approaches the purpose of this research is to investigate fusing GPS with lower-cost Micro-Electro-Mechanical System (MEMS) Inertial Measurement Units (IMU) and a mathematical model of aircraft dynamics, referred to as an Aircraft Dynamic Model (ADM) in this thesis. Using a model of aircraft dynamics in navigation systems has been studied before in the available literature and shown to be useful particularly for aiding inertial coasting or attitude determination. In contrast to these applications, this thesis investigates its use in ABAS. This thesis presents an ABAS architecture concept which makes use of a MEMS IMU and ADM, named the General Aviation GPS Integrity System (GAGIS) for convenience. GAGIS includes a GPS, MEMS IMU, ADM, a bank of Extended Kalman Filters (EKF) and uses the Normalized Solution Separation (NSS) method for fault detection. The GPS, IMU and ADM information is fused together in a tightly-coupled configuration, with frequent GPS updates applied to correct the IMU and ADM. The use of both IMU and ADM allows for a number of different possible configurations. Three are investigated in this thesis; a GPS-IMU EKF, a GPS-ADM EKF and a GPS-IMU-ADM EKF. The integrity monitoring performance of the GPS-IMU EKF, GPS-ADM EKF and GPS-IMU-ADM EKF architectures are compared against each other and against a stand-alone GPS architecture in a series of computer simulation tests of an APV approach. Typical GPS, IMU, ADM and environmental errors are simulated. The simulation results show the GPS integrity monitoring performance achievable by augmenting GPS with an ADM and low-cost IMU for a general aviation aircraft on an APV approach. A contribution to research is made in determining whether a low-cost IMU or ADM can provide improved integrity monitoring performance over stand-alone GPS. It is found that a reduction of approximately 50% in protection levels is possible using the GPS-IMU EKF or GPS-ADM EKF as well as faster detection of a slowly growing ramp fault on a GPS pseudorange measurement. A second contribution is made in determining how augmenting GPS with an ADM compares to using a low-cost IMU. By comparing the results for the GPS-ADM EKF against the GPS-IMU EKF it is found that protection levels for the GPS-ADM EKF were only approximately 2% higher. This indicates that the GPS-ADM EKF may potentially replace the GPS-IMU EKF for integrity monitoring should the IMU ever fail. In this way the ADM may contribute to the navigation system robustness and redundancy. To investigate this further, a third contribution is made in determining whether or not the ADM can function as an IMU replacement to improve navigation system redundancy by investigating the case of three IMU accelerometers failing. It is found that the failed IMU measurements may be supplemented by the ADM and adequate integrity monitoring performance achieved. Besides treating the IMU and ADM separately as in the GPS-IMU EKF and GPS-ADM EKF, a fourth contribution is made in investigating the possibility of fusing the IMU and ADM information together to achieve greater performance than either alone. This is investigated using the GPS-IMU-ADM EKF. It is found that the GPS-IMU-ADM EKF can achieve protection levels approximately 3% lower in the horizontal and 6% lower in the vertical than a GPS-IMU EKF. However this small improvement may not justify the complexity of fusing the IMU with an ADM in practical systems. Affordable ABAS in general aviation may enhance existing GPS-only fault detection solutions or help overcome any outages in augmentation systems such as the Ground-based Regional Augmentation System (GRAS). Countries such as Australia which currently do not have an augmentation solution for general aviation could especially benefit from the economic savings and safety benefits of satellite navigation-based APV approaches.
Resumo:
Information fusion in biometrics has received considerable attention. The architecture proposed here is based on the sequential integration of multi-instance and multi-sample fusion schemes. This method is analytically shown to improve the performance and allow a controlled trade-off between false alarms and false rejects when the classifier decisions are statistically independent. Equations developed for detection error rates are experimentally evaluated by considering the proposed architecture for text dependent speaker verification using HMM based digit dependent speaker models. The tuning of parameters, n classifiers and m attempts/samples, is investigated and the resultant detection error trade-off performance is evaluated on individual digits. Results show that performance improvement can be achieved even for weaker classifiers (FRR-19.6%, FAR-16.7%). The architectures investigated apply to speaker verification from spoken digit strings such as credit card numbers in telephone or VOIP or internet based applications.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.