164 resultados para Demographic surveillance
em Queensland University of Technology - ePrints Archive
Resumo:
A matched case-control study of mortality to children under age five was conducted to consider associations with parents' socio-economic status and social support in the Farafenni Demographic Surveillance Site (DSS). Cases and controls were selected from Farafenni DSS, matched on date of birth, and parents were interviewed about personal resources and social networks. Parents with the lowest personal socio-economic status and social support were identified. Multivariate multinomial regression was used to consider whether the children of these parents were at increased risk of either infant or 1-4 mortality, in separate models using either parents' characteristics. There was no benefit found for higher SES or better social support with respect to child mortality. Children of fathers who had the poorest social support had lower 1-4 mortality risk (OR=0.52, p=0.037). Given that socio-economic status was not associated with child mortality, it seems unlikely that the explanation for the link between father's social support and mortality is linked to resource availability. Explanations for the risk effect of father's social ties may lie in decision-making around health maintenance and health care for children.
Resumo:
More than a century ago in their definitive work “The Right to Privacy” Samuel D. Warren and Louis D. Brandeis highlighted the challenges posed to individual privacy by advancing technology. Today’s workplace is characterised by its reliance on computer technology, particularly the use of email and the Internet to perform critical business functions. Increasingly these and other workplace activities are the focus of monitoring by employers. There is little formal regulation of electronic monitoring in Australian or United States workplaces. Without reasonable limits or controls, this has the potential to adversely affect employees’ privacy rights. Australia has a history of legislating to protect privacy rights, whereas the United States has relied on a combination of constitutional guarantees, federal and state statutes, and the common law. This thesis examines a number of existing and proposed statutory and other workplace privacy laws in Australia and the United States. The analysis demonstrates that existing measures fail to adequately regulate monitoring or provide employees with suitable remedies where unjustifiable intrusions occur. The thesis ultimately supports the view that enacting uniform legislation at the national level provides a more effective and comprehensive solution for both employers and employees. Chapter One provides a general introduction and briefly discusses issues relevant to electronic monitoring in the workplace. Chapter Two contains an overview of privacy law as it relates to electronic monitoring in Australian and United States workplaces. In Chapter Three there is an examination of the complaint process and remedies available to a hypothetical employee (Mary) who is concerned about protecting her privacy rights at work. Chapter Four provides an analysis of the major themes emerging from the research, and also discusses the draft national uniform legislation. Chapter Five details the proposed legislation in the form of the Workplace Surveillance and Monitoring Act, and Chapter Six contains the conclusion.
Resumo:
Background: The transition to school is a sensitive period for children in relation to school success. In the early school years, children need to develop positive attitudes to school and have experiences that promote academic, behavioural and social competence. When children begin school there are higher expectations of responsibility and independence and in the year one class, there are more explicit academic goals for literacy and numeracy and more formal instruction. Most importantly, children’s early attitudes to learning and learning styles have an impact on later educational outcomes. Method: Data were drawn from The Longitudinal Study of Australian Children (LSAC). LSAC is a cross-sequential cohort study funded by the Australian Government. In these analyses, Wave 2 (2006) data for 2499 children in the Kindergarten Cohort were used. Children, at Wave 2, were in the first year of formal school. They had a mean age of 6.9 years (SD= 0.26). Measures included a 6-item measure of Approaches to Learning (task persistence, independence) and the Academic Rating Scales for language and literacy and mathematical thinking. Teachers rated their relationships with children on the short form of the STRS. Results: Girls were rated by their teachers as doing better than boys on Language and literacy, Approaches to learning; and they had a better relationship with their teacher. Children from an Aboriginal or Torres Strait Island (ATSI) background were rated as doing less well on Language and Literacy and Mathematical thinking and on their Approaches to learning. Children from high Socio Economic Position families are doing better on teacher rated Language and Literacy, Mathematical thinking, Approaches to learning and they had a better relationship with their teacher. Conclusions: Findings highlight the importance of key demographic variables in understanding children’s early school success.
Resumo:
In Australia, the Queensland fruit fly (B. tryoni), is the most destructive insect pest of horticulture, attacking nearly all fruit and vegetable crops. This project has researched and prototyped a system for monitoring fruit flies so that authorities can be alerted when a fly enters a crop in a more efficient manner than is currently used. This paper presents the idea of our sensor platform design as well as the fruit fly detection and recognition algorithm by using machine vision techniques. Our experiments showed that the designed trap and sensor platform is capable to capture quality fly images, the invasive flies can be successfully detected and the average precision of the Queensland fruit fly recognition is 80% from our experiment.
Resumo:
Background: While there has been substantial research examining the correlates of comorbid substance abuse in psychotic disorders, it has been difficult to tease apart the relative importance of individual variables. Multivariate analyses are required, in which the relative contributions of risk factors to specific forms of substance misuse are examined, while taking into account the effects of other important correlates. Methods: This study used multivariate correlates of several forms of comorbid substance misuse in a large epidemiological sample of 852 Australians with DSMIII- R-diagnosed psychoses. Results: Multiple substance use was common and equally prevalent in nonaffective and affective psychoses. The most consistent correlate across the substance use disorders was male sex. Younger age groups were more likely to report the use of illegal drugs, while alcohol misuse was not associated with age. Side effects secondary to medication were associated with the misuse of cannabis and multiple substances, but not alcohol. Lower educational attainment was associated with cannabis misuse but not other forms of substance abuse. Conclusion: The profile of substance misuse in psychosis shows clinical and demographic gradients that can inform treatment and preventive research.
Resumo:
Spatial information captured from optical remote sensors on board unmanned aerial vehicles (UAVs) has great potential in automatic surveillance of electrical infrastructure. For an automatic vision-based power line inspection system, detecting power lines from a cluttered background is one of the most important and challenging tasks. In this paper, a novel method is proposed, specifically for power line detection from aerial images. A pulse coupled neural filter is developed to remove background noise and generate an edge map prior to the Hough transform being employed to detect straight lines. An improved Hough transform is used by performing knowledge-based line clustering in Hough space to refine the detection results. The experiment on real image data captured from a UAV platform demonstrates that the proposed approach is effective for automatic power line detection.
Resumo:
Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.