36 resultados para Defocus

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the limits at which blur due to defocus, crossed-cylinder astigmatism, and trefoil became noticeable, troublesome or objectionable. Black letter targets (0.1, 0.35 and 0.6 logMAR) were presented on white backgrounds. Subjects were cyclopleged and had effectively 5 mm pupils. Blur was induced with a deformable, adaptive-optics mirror operating under open-loop conditions. Mean defocus blur limits of six subjects with uncorrected intrinsic higher-order ocular aberrations ranged from 0.18 ± 0.08 D (noticeable blur criterion, 0.1 logMAR) to 1.01 ± 0.27 D (objectionable blur criterion, 0.6 logMAR. Crossed-cylinder astigmatic blur limits were approximately 90% of those for defocus, but with considerable meridional influences. In two of the subjects, the intrinsic aberrations of the eye were subsequently corrected before the defocus and astigmatic blur were added. This resulted in only minor reductions in their blur limits. When assessed with trefoil blur and corrected intrinsic ocular aberrations, the ratio of objectionable to noticeable blur limits in these two subjects was much higher for trefoil (3.5) than for defocus (2.5) and astigmatism (2.2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate the short term influence of imposed monocular defocus upon human optical axial length (the distance from anterior cornea to retinal pigment epithelium) and ocular biometrics. Methods: Twenty-eight young adult subjects (14 myopes and 14 emmetropes) had eye biometrics measured before and then 30 and 60 minutes after exposure to monocular (right eye) defocus. Four different monocular defocus conditions were tested, each on a separate day: control (no defocus), myopic (+3 D defocus), hyperopic (-3 D defocus) and diffuse (0.2 density Bangerter filter) defocus. The fellow eye was optimally corrected (no defocus). Results: Imposed defocus caused small but significant changes in optical axial length (p<0.0001). A significant increase in optical axial length (mean change +8 ± 14 μm, p=0.03) occurred following hyperopic defocus, and a significant reduction in optical axial length (mean change -13 ± 14 μm, p=0.0001) was found following myopic defocus. A small increase in optical axial length was observed following diffuse defocus (mean change +6 ± 13 μm, p=0.053). Choroidal thickness also exhibited some significant changes with certain defocus conditions. No significant difference was found between myopes and emmetropes in the changes in optical axial length or choroidal thickness with defocus. Conclusions: Significant changes in optical axial length occur in human subjects following 60 minutes of monocular defocus. The bi-directional optical axial length changes observed in response to defocus implies the human visual system is capable of detecting the presence and sign of defocus and altering optical axial length to move the retina towards the image plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. To assess whether there are any advantages of binocular over monocular vision under blur conditions. METHODS. We measured the effect of defocus, induced by positive lenses, on the pattern reversal Visual Evoked Potential (VEP) and on visual acuity (VA). Monocular (dominant eye) and binocular VEPs were recorded from thirteen volunteers (average age: 28±5 years, average spherical equivalent: -0.25±0.73 D) for defocus up to 2.00 D using positive powered lenses. VEPs were elicited using reversing 10 arcmin checks at a rate of 4 reversals/second. The stimulus subtended a circular field of 7 degrees with 100% contrast and mean luminance 30 cd/m2. VA was measured under the same conditions using ETDRS charts. All measurements were performed at 1m viewing distance with best spectacle sphero-cylindrical correction and natural pupils. RESULTS. With binocular stimulation, amplitudes and implicit times of the P100 component of the VEPs were greater and shorter, respectively, in all cases than for monocular stimulation. Mean binocular enhancement ratio in the P100 amplitude was 2.1 in-focus, increasing linearly with defocus to be 3.1 at +2.00 D defocus. Mean peak latency was 2.9 ms shorter in-focus with binocular than for monocular stimulation, with the difference increasing with defocus to 8.8 ms at +2.00 D. As for the VEP amplitude, VA was always better with binocular than with monocular vision, with the difference being greater for higher retinal blur. CONCLUSIONS. Both subjective and electrophysiological results show that binocular vision ameliorates the effect of defocus. The increased binocular facilitation observed with retinal blur may be due to the activation of a larger population of neurons at close-to-threshold detection under binocular stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research indicates that brief periods (60 minutes) of monocular defocus lead to small but significant changes in human axial length. However, the effects of longer periods of defocus on the axial length of human eyes are unknown. We examined the influence of a 12 hour period of monocular myopic defocus on the natural daily variations occurring in axial length and choroidal thickness of young adult emmetropes. A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained for 13 emmetropic young adults over three consecutive days. The natural daily rhythms (Day 1, baseline day, no defocus), the daily rhythms with monocular myopic defocus (Day 2, defocus day, +1.50 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, recovery day, no defocus) were all examined. Significant variations over the course of the day were observed in both axial length and choroidal thickness on each of the three measurement days (p<0.0001). The magnitude and timing of the daily variations in axial length and choroidal thickness were significantly altered with the monocular myopic defocus on day 2 (p<0.0001). Following the introduction of monocular myopic defocus, the daily peak in axial length occurred approximately 6 hours later, and the peak in choroidal thickness approximately 8.5 hours earlier in the day compared to days 1 and 3 (with no defocus). The mean amplitude (peak to trough) of change in axial length (0.030 ± 0.012 on day 1, 0.020 ± 0.010 on day 2 and 0.033 ± 0.012 mm on day 3) and choroidal thickness (0.030 ± 0.007 on day 1, 0.022 ± 0.006 on day 2 and 0.027 ± 0.009 mm on day 3) were also significantly different between the three days (both p<0.05). The introduction of monocular myopic defocus disrupts the daily variations in axial length and choroidal thickness of human eyes (in terms of both amplitude and timing) that return to normal the following day after removal of the defocus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To investigate the influence of monocular hyperopic defocus on the normal diurnal rhythms in axial length and choroidal thickness of young adults. Methods A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained for 15 emmetropic young adults over three consecutive days. The natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular hyperopic defocus (Day 2, – 2.00 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) in diurnal rhythms were examined. Results Both axial length and choroidal thickness underwent significant diurnal changes on each of the three measurement days (p<0.0001). The introduction of monocular hyperopic defocus resulted in significant changes in the diurnal variations observed in both parameters (p<0.05). A significant (p<0.001) increase in the mean amplitude (peak to trough) of change in axial length (mean increase, 0.016 ± 0.005 mm) and choroidal thickness (mean increase, 0.011 ± 0.003 mm) was observed on day 2 with hyperopic defocus compared to the two ‘no defocus’ days (days 1 and 3). At the second measurement (mean time 12:10 pm) on the day with hyperopic defocus, the eye was significantly longer by 0.012 ± 0.002 mm compared to the other two days (p<0.05). No significant difference was observed in the average timing of the daily peaks in axial length (mean peak time 12:12 pm) and choroidal thickness (21:02 pm) over the three days. Conclusions The introduction of monocular hyperopic defocus resulted in a significant increase in the amplitude of the diurnal change in axial length and choroidal thickness that returned to normal the following day after removal of the blur stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate how distance visual acuity in the presence of defocus and astigmatism is affected by age and whether aberration properties of young and older eyes can explain any differences. METHODS: Participants were 12 young adults (mean [±SD] age, 23 [±2] years) and 10 older adults (mean [±SD] age, 57 [±4] years). Cyclopleged right eyes were used with 4-mm effective pupil sizes. Thirteen blur conditions were used by adding five spherical lens conditions (-1.00 diopters [D], -0.50 D, plano/0.00 D, +0.50 D, and +1.00 D) and adding two cross-cylindrical lenses (+0.50 DS/-1.00 DC and +1.00 D/-2.00 DC, or 0.50 D and 1.00 D astigmatism) at four negative cylinder axes (45, 90, 135, and 180 degrees). Targets were single lines of high-contrast letters based on the Bailey-Lovie chart. Successively smaller lines were read until a participant could no longer read any of the letters correctly. Aberrations were measured with a COAS-HD Hartmann-Shack aberrometer. RESULTS: There were no significant differences between the two age groups. We estimated that 70 to 80 participants per group would be needed to show significant effects of the trend of greater visual acuity loss for the young group. Visual acuity loss for astigmatism was twice that for defocus of the same magnitude of blur strength (0.33 logMAR [logarithm of the minimum angle of resolution]/D compared with 0.18 logMAR/D), contrary to the geometric prediction of similar loss. CONCLUSIONS: Any age-related differences in visual acuity in the presence of defocus and astigmatism were swamped by interparticipant variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the threshold level of defocus that induces a measurable objective change in accommodation response to a target at an intermediate distance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the potential for the third-order aberrations coma and trefoil to provide a signed cue to accommodation. It is first demonstrated theoretically (with some assumptions) that the point spread function is insensitive to the sign of spherical defocus in the presence of odd-order aberrations. In an experimental investigation, the accommodation response to a sinusoidal change in vergence (1–3 D, 0.2 Hz) of a monochromatic stimulus was obtained with a dynamic infrared optometer. Measurements were obtained in 10 young visually normal individuals with and without custom contact lenses that induced low and high values of r.m.s. trefoil (0.25, 1.03 μm) and coma (0.34, 0.94 μm). Despite variation between subjects, we did not find any statistically significant increase or decrease in the accommodative gain for low levels of trefoil and coma, although effects approached or reached significance for the high levels of trefoil and coma. Theoretical and experimental results indicate that the presence of Zernike third-order aberrations on the eye does not seem to play a crucial role in the dynamics of the accommodation response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extended an earlier study (Vision Research, 45, 1967–1974, 2005) in which we investigated limits at which induced blur of letter targets becomes noticeable, troublesome and objectionable. Here we used a deformable adaptive optics mirror to vary spherical defocus for conditions of a white background with correction of astigmatism; a white background with reduction of all aberrations other than defocus; and a monochromatic background with reduction of all aberrations other than defocus. We used seven cyclopleged subjects, lines of three high-contrast letters as targets, 3–6 mm artificial pupils, and 0.1–0.6 logMAR letter sizes. Subjects used a method of adjustment to control the defocus component of the mirror to set the 'just noticeable', 'just troublesome' and 'just objectionable' defocus levels. For the white-no adaptive optics condition combined with 0.1 logMAR letter size, mean 'noticeable' blur limits were ±0.30, ±0.24 and ±0.23 D at 3, 4 and 6 mm pupils, respectively. White-adaptive optics and monochromatic-adaptive optics conditions reduced blur limits by 8% and 20%, respectively. Increasing pupil size from 3–6 mm decreased blur limits by 29%, and increasing letter size increased blur limits by 79%. Ratios of troublesome to noticeable, and of objectionable to noticeable, blur limits were 1.9 and 2.7 times, respectively. The study shows that the deformable mirror can be used to vary defocus in vision experiments. Overall, the results of noticeable, troublesome and objectionable blur agreed well with those of the previous study. Attempting to reduce higher-order aberrations or chromatic aberrations, reduced blur limits to only a small extent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the effect of orthokeratology on peripheral aberrations in two myopic volunteers. Methods: The subjects wore reverse geometry orthokeratology lenses overnight and were monitored for 2 weeks of wear. They underwent corneal topography, peripheral refraction (out to ±34° along the horizontal visual field) and peripheral aberration measurements across the 42° × 32° central visual field using a modified Hartmann-Shack aberrometer. Results: Spherical equivalent refraction was corrected for the central 25° of the visual fields beyond which it gradually returned to its preorthokeratology values. There were increases in axial coma, spherical aberration, higher order root mean square aberrations, and total root-mean-squared aberrations (excluding defocus). The rates of change of vertical and horizontal coma across the field changed in sign. Total root mean square aberrations showed a quadratic rate of change across the visual field which was greater subsequent to orthokeratology. Conclusion: Although orthokeratology can correct peripheral relative hypermetropia it induces dramatic increases in higher-order aberrations across the field

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the foveal Stiles-Crawford effect (SCE) as a function of up to 8D accommodation stimulus in six young emmetropes and six young myopes using a psychophysical two-channel Maxwellian system in which the threshold luminance increment of a 1 mm spot entering through variable positions in the pupil was determined against a background formed by a 4 mm spot entering the pupil centrally. The SCE became steeper in both groups with increasing accommodation stimulus, but with no systematic shift of the peak. Combining the data of both groups gave significant increases in directionality of 15-20% in horizontal and vertical pupil meridians with 6D of accommodation. However, additional experiments indicated that much of this was an artefact of higher order aberrations and accommodative lag. Thus, there appears to be little changes in orientation or directionality in the SCE with accommodation stimulus levels up to 6 D, but it is possible that changes may occur at very high accommodation levels

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small long wavelength lights (≤ 1’ arc) change colour appearance with positive defocus, appearing yellow or white. I investigated influences of longitudinal chromatic aberration and monochromatic aberrations on colour appearance of small narrow band lights. Seven cyclopleged participants viewed a small light (1’ arc diameter, λmax range 510 - 628 nm) centred within a 4.6’ black annulus and surrounded by a uniform white field under photopic light levels. An optical trombone varied focus. Participants were required to vary the focus by moving the optical trombone in either positive or negative direction and report when they noticed a change in appearance of the defocused narrow band light. Longitudinal chromatic aberration was controlled using a Powell achromatizing lens and its doublet and triplet components that neutralized, doubled and reversed the eye’s chromatic aberration, respectively. Changes in colour appearance for a 628 nm light occurred without any lens at +0.5 ± 0.2D defocus and with the doublet at +0.6 ± 0.2 D. The achromatizing lens did not affect appearance and the phenomenon was evident with the triplet for negative defocus (-0.5 ± 0.3 D). Adaptive optics correction of astigmatism and higher order monochromatic aberration did not affect magnitude significantly. Colour changes occurred despite a range of participant L/M cone ratios. Direction of change in colour appearance was reversed for short compared to long wavelengths. We conclude that longitudinal chromatic aberrations, but not monochromatic aberrations, are involved in changing appearance of small lights with defocus. Additional neuronal mechanisms that may contribute to the colour changes are considered.