169 resultados para Decoding algorithm

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain decoding of functional Magnetic Resonance Imaging data is a pattern analysis task that links brain activity patterns to the experimental conditions. Classifiers predict the neural states from the spatial and temporal pattern of brain activity extracted from multiple voxels in the functional images in a certain period of time. The prediction results offer insight into the nature of neural representations and cognitive mechanisms and the classification accuracy determines our confidence in understanding the relationship between brain activity and stimuli. In this paper, we compared the efficacy of three machine learning algorithms: neural network, support vector machines, and conditional random field to decode the visual stimuli or neural cognitive states from functional Magnetic Resonance data. Leave-one-out cross validation was performed to quantify the generalization accuracy of each algorithm on unseen data. The results indicated support vector machine and conditional random field have comparable performance and the potential of the latter is worthy of further investigation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: