2 resultados para De-noising

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present an account of children's interactions with a mobile technology prototype within a school context. The Noise Detectives trial was conducted in a school setting with the aim of better understanding the role of mobile technology as a mediator within science learning activities. Over eighty children, aged between ten and twelve, completed an outdoor data gathering activity using a mobile learning prototype that included paper and digital components. They measured and recorded noise levels at a range of locations throughout the schools. We analyzed the activity to determine how the components of the prototype were integrated into the learning activity, and to identify differences in behavior that resulted from using these components. We present design implications that resulted from observed differences in prototype use and appropriation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to their unobtrusive nature, vision-based approaches to tracking sports players have been preferred over wearable sensors as they do not require the players to be instrumented for each match. Unfortunately however, due to the heavy occlusion between players, variation in resolution and pose, in addition to fluctuating illumination conditions, tracking players continuously is still an unsolved vision problem. For tasks like clustering and retrieval, having noisy data (i.e. missing and false player detections) is problematic as it generates discontinuities in the input data stream. One method of circumventing this issue is to use an occupancy map, where the field is discretised into a series of zones and a count of player detections in each zone is obtained. A series of frames can then be concatenated to represent a set-play or example of team behaviour. A problem with this approach though is that the compressibility is low (i.e. the variability in the feature space is incredibly high). In this paper, we propose the use of a bilinear spatiotemporal basis model using a role representation to clean-up the noisy detections which operates in a low-dimensional space. To evaluate our approach, we used a fully instrumented field-hockey pitch with 8 fixed high-definition (HD) cameras and evaluated our approach on approximately 200,000 frames of data from a state-of-the-art real-time player detector and compare it to manually labeled data.