274 resultados para Datum level
em Queensland University of Technology - ePrints Archive
Resumo:
International evidence on the cost and effects of interventions for reducing the global burden of depression remain scarce. Aims: To estimate the population-level cost-effectiveness of evidence-based depression interventions and their contribution towards reducing current burden. Method: Primary-care-based depression interventions were modelled at the level of whole populations in 14 epidemiological subregions of the world. Total population-level costs (in international dollars or I$) and effectiveness (disability adjusted life years (DALYs) averted) were combined to form average and incremental cost-effectiveness ratios. Results: Evaluated interventions have the potential to reduce the current burden of depression by 10–30%. Pharmacotherapy with older antidepressant drugs, with or without proactive collaborative care, are currently more cost-effective strategies than those using newer antidepressants, particularly in lower-income subregions. Conclusions: Even in resource-poor regions, each DALYaverted by efficient depression treatments in primary care costs less than 1 year of average per capita income, making such interventions a cost-effective use of health resources. However, current levels of burden can only be reduced significantlyif there is a substantialincrease substantial increase intreatment coverage.
Resumo:
Internationally, recognition of the role of assessment to inform the learning process has received much attention in recent years. Assessment for learning, not just of learning is being supported by an increasing body of literature providing strategies that teachers and their students can incorporate to support the learning process (Assessment Reform Group, 2002; Broadfoot & Black, 2004; James, 2006). Concurrently there has been an increase internationally in systemic accountability requirements of schools in terms of student results. The convergence of these two movements has resulted in some education systems promoting standards-driven reform involving authentic assessment and a re-examination of the relationship between the teacher and the student in the learning process. In this context standards are intended to be used as the basis for judgements of student achievement; while the results from assessment tasks are meant to both inform the teaching/learning process, and to report and track student progress. In such system, the role and reliability of teacher judgement takes centre stage.
Resumo:
Image annotation is a significant step towards semantic based image retrieval. Ontology is a popular approach for semantic representation and has been intensively studied for multimedia analysis. However, relations among concepts are seldom used to extract higher-level semantics. Moreover, the ontology inference is often crisp. This paper aims to enable sophisticated semantic querying of images, and thus contributes to 1) an ontology framework to contain both visual and contextual knowledge, and 2) a probabilistic inference approach to reason the high-level concepts based on different sources of information. The experiment on a natural scene database from LabelMe database shows encouraging results.
Resumo:
To date, automatic recognition of semantic information such as salient objects and mid-level concepts from images is a challenging task. Since real-world objects tend to exist in a context within their environment, the computer vision researchers have increasingly incorporated contextual information for improving object recognition. In this paper, we present a method to build a visual contextual ontology from salient objects descriptions for image annotation. The ontologies include not only partOf/kindOf relations, but also spatial and co-occurrence relations. A two-step image annotation algorithm is also proposed based on ontology relations and probabilistic inference. Different from most of the existing work, we specially exploit how to combine representation of ontology, contextual knowledge and probabilistic inference. The experiments show that image annotation results are improved in the LabelMe dataset.