7 resultados para DRY MATTER

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study was conducted to explore the potential to incorporate local plant-based feed ingredients into diets formulated for the mud crab species, Scylla paramamosain, commonly exploited for aquaculture in South-east Asia. Four test ingredients (defatted soybean meal, rice bran, cassava meal and corn flour) were incorporated at 30% or 45% inclusion levels in a fishmeal-based reference diet and used in digestibility trials where apparent digestibility coefficients (ADCs) for experimental diets and test ingredients were determined. Generally, high ADC values were obtained using diets containing 30% soybean meal or rice bran. By contrast, the lowest ADC values were obtained for the diet containing 45% cassava meal [70.9% for dry matter (ADMD); 77.1% for crude protein (ACPD) and 80.2% for gross energy (AGED)]. Similar trends were observed when ADC ingredient (I) digestibilities were compared. Specifically, the highest ADCI values were obtained for soybean meal when used at a 30% inclusion level (87.6% ADMDI; 98.4% ACPDI and 95.6% AGEDI) while the lowest ADCI values were obtained using cassava meal at a 45% inclusion level (53.8% ADMDI; 60.2% ACPDI and 67.3% AGEDI). Based on the current findings, we propose that soybean meal and rice bran could be considered for incorporation into formulated diets for S. paramamosain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study examined the capacity of the mud crab, Scylla serrata to digest experimental diets that contained different animal and plant-based feed meals or different levels or types of starch. The apparent dry matter digestibility (ADMD) coefficients for all feed meals tested in the first part of this study, except meat meal, were similar (78–88%). Crude protein digestibility (ACPD) coefficients for all feed meals were relatively high, with values ranging from 86% to 96%. Cotton seed meal, poultry meal, canola meal, fishmeal, soybean meal and lupin meal had similar gross energy digestibility (AGED) values (P>0.05) ranging from 84% to 89%. In the second part of this study, the impact of selected starches on the digestibility of fishmeal-based formulated diets was assessed. The apparent starch digestibility (ASD) of wheat starch decreased significantly as the inclusion level was increased from 15% to 60%, however, there was no significant effect on ACPD values. At a 30% inclusion level, the ASD of diets containing different starches decreased in the order corn>wheat>potato=rice. Moreover, ACPD values were significantly higher (P<0.05) in the diets containing corn or rice starch than in those containing wheat or potato starches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In herbaceous ecosystems worldwide, biodiversity has been negatively impacted by changed grazing regimes and nutrient enrichment. Altered disturbance regimes are thought to favour invasive species that have a high phenotypic plasticity, although most studies measure plasticity under controlled conditions in the greenhouse and then assume plasticity is an advantage in the field. Here, we compare trait plasticity between three co-occurring, C 4 perennial grass species, an invader Eragrostis curvula, and natives Eragrostis sororia and Aristida personata to grazing and fertilizer in a three-year field trial. We measured abundances and several leaf traits known to correlate with strategies used by plants to fix carbon and acquire resources, i.e. specific leaf area (SLA), leaf dry matter content (LDMC), leaf nutrient concentrations (N, C:N, P), assimilation rates (Amax) and photosynthetic nitrogen use efficiency (PNUE). In the control treatment (grazed only), trait values for SLA, leaf C:N ratios, Amax and PNUE differed significantly between the three grass species. When trait values were compared across treatments, E. curvula showed higher trait plasticity than the native grasses, and this correlated with an increase in abundance across all but the grazed/fertilized treatment. The native grasses showed little trait plasticity in response to the treatments. Aristida personata decreased significantly in the treatments where E. curvula increased, and E. sororia abundance increased possibly due to increased rainfall and not in response to treatments or invader abundance. Overall, we found that plasticity did not favour an increase in abundance of E. curvula under the grazed/fertilized treatment likely because leaf nutrient contents increased and subsequently its' palatability to consumers. E. curvula also displayed a higher resource use efficiency than the native grasses. These findings suggest resource conditions and disturbance regimes can be manipulated to disadvantage the success of even plastic exotic species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In wastewater treatment plants based on anaerobic digestion, supernatant and outflows from sludge dewatering systems contain significantly high amount of ammonium. Generally, these waters are returned to the head of wastewater treatment plant (WWTP), thereby increasing the total nitrogen load of the influent flow. Ammonium from these waters can be recovered and commercially utilised using novel ion-exchange materials. Mackinnon et al. have described an approach for removal and recovery of ammonium from side stream centrate returns obtained from anaerobic digester of a typical WWTP. Most of the ammonium from side streams can potentially be removed, which significantly reduces overall inlet demand at a WWTP. However, the extent of reduction achieved depends on the level of ammonium and flow-rate in the side stream. The exchange efficiency of the ion-exchange material, MesoLite, used in the ammonium recovery process deteriorates with long-term use due to mechanical degradation and use of regenerant. To ensure that a sustainable process is utilised a range of potential applications for this “spent” MesoLite have been evaluated. The primary focus of evaluations has been use of ammonium-loaded MesoLite as a source of nitrogen and growth medium for plants. A MesoLite fertiliser has advantage over soluble fertilisers in that N is held on an insoluble matrix and is gradually released according to exchange equilibria. Many conventional N fertilisers are water-soluble and thus, instantly release all applied N into the soil solution. Loss of nutrient commonly occurs through volatilisation and/or leaching. On average, up to half of the N delivered by a typical soluble fertiliser can be lost through these processes. In this context, use of ammonium-loaded MesoLite as a fertiliser has been evaluated using standard greenhouse and field-based experiments for low fertility soils. Rye grass, a suitable test species for greenhouse trials, was grown in 1kg pots over a period of several weeks with regular irrigation. Nitrogen was applied at a range of rates using a chemical fertiliser as a control and using two MesoLite fertilisers. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks, and dry plant mass and N concentrations were determined. At all nitrogen application rates, ammonium-loaded MesoLite produced higher plant mass than plants fertilised by the chemical fertiliser. The lower fertiliser effectiveness of the chemical fertliser is attributed to possible loss of some N through volatilisation. The MesoLite fertilisers did not show any adverse effect on availability of macro and trace nutrients, as shown by lack of deficiency symptoms, dry matter yield and plant analyses. Nitrogen loaded on to MesoLite in the form of exchanged ammonium is readily available to plants while remaining protected from losses via leaching and volatilisation. Spent MesoLite appears to be a suitable and effective fertiliser for a wide range of soils, particularly sandy soils with poor nutrient holding capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By combining gene design and heterologous over-expression of Rhodotorula gracilis D-amino acid oxidase (RgDAO) in Pichia pastoris, enzyme production was enhanced by one order of magnitude compared to literature benchmarks, giving 350 kUnits/l of fed-batch bioreactor culture with a productivity of 3.1 kUnits/l h. P. pastoris cells permeabilized by freeze-drying and incubation in 2-propanol (10% v/v) produce a highly active (1.6 kUnits/g dry matter) and stable oxidase preparation. Critical bottlenecks in the development of an RgDAO catalyst for industrial applications have been eliminated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha−1 on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha−1) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC dry matter and C/N ratio of the OAs, WFPS, and the soil CEC. Application of RB reduced N2O emissions by as much as 42-64% depending on WFPS. The reductions in both CO2 and N2O emissions after application of RB were due to a reduced bioavailability of C and not immobilisation of N. These findings show that the effect of OAs on soil GHG emissions can vary substantially depending on their chemical properties. OAs with a high availability of labile C and N can lead to elevated emissions of CO2 and N2O, while rice husk biochar showed potential in reducing overall soil GHG emissions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The regulation of carotenoid biosynthesis in a high-carotenoid-accumulating Fe’i group Musa cultivar, “Asupina”, has been examined and compared to that of a low-carotenoid-accumulating cultivar, “Cavendish”, to understand the molecular basis underlying carotenogenesis during banana fruit development. Comparisons in the accumulation of carotenoid species, expression of isoprenoid genes, and product sequestration are reported. Key differences between the cultivars include greater carotenoid cleavage dioxygenase 4 (CCD4) expression in “Cavendish” and the conversion of amyloplasts to chromoplasts during fruit ripening in “Asupina”. Chromoplast development coincided with a reduction in dry matter content and fruit firmness. Chromoplasts were not observed in “Cavendish” fruits. Such information should provide important insights for future developments in the biofortification and breeding of banana.