474 resultados para DIGITAL SIGNATURE

em Queensland University of Technology - ePrints Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tzeng et al. proposed a new threshold multi-proxy multi-signature scheme with threshold verification. In their scheme, a subset of original signers authenticates a designated proxy group to sign on behalf of the original group. A message m has to be signed by a subset of proxy signers who can represent the proxy group. Then, the proxy signature is sent to the verifier group. A subset of verifiers in the verifier group can also represent the group to authenticate the proxy signature. Subsequently, there are two improved schemes to eliminate the security leak of Tzeng et al.’s scheme. In this paper, we have pointed out the security leakage of the three schemes and further proposed a novel threshold multi-proxy multi-signature scheme with threshold verification.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A strong designated verifier signature scheme makes it possible for a signer to convince a designated verifier that she has signed a message in such a way that the designated verifier cannot transfer the signature to a third party, and no third party can even verify the validity of a designated verifier signature. We show that anyone who intercepts one signature can verify subsequent signatures in Zhang-Mao ID-based designated verifier signature scheme and Lal-Verma ID-based designated verifier proxy signature scheme. We propose a new and efficient ID-based designated verifier signature scheme that is strong and unforgeable. As a direct corollary, we also get a new efficient ID-based designated verifier proxy signature scheme.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multiple-time signatures are digital signature schemes where the signer is able to sign a predetermined number of messages. They are interesting cryptographic primitives because they allow to solve many important cryptographic problems, and at the same time offer substantial efficiency advantage over ordinary digital signature schemes like RSA. Multiple-time signature schemes have found numerous applications, in ordinary, on-line/off-line, forward-secure signatures, and multicast/stream authentication. We propose a multiple-time signature scheme with very efficient signing and verifying. Our construction is based on a combination of one-way functions and cover-free families, and it is secure against the adaptive chosen-message attack.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

At CRYPTO 2006, Halevi and Krawczyk proposed two randomized hash function modes and analyzed the security of digital signature algorithms based on these constructions. They showed that the security of signature schemes based on the two randomized hash function modes relies on properties similar to the second preimage resistance rather than on the collision resistance property of the hash functions. One of the randomized hash function modes was named the RMX hash function mode and was recommended for practical purposes. The National Institute of Standards and Technology (NIST), USA standardized a variant of the RMX hash function mode and published this standard in the Special Publication (SP) 800-106. In this article, we first discuss a generic online birthday existential forgery attack of Dang and Perlner on the RMX-hash-then-sign schemes. We show that a variant of this attack can be applied to forge the other randomize-hash-then-sign schemes. We point out practical limitations of the generic forgery attack on the RMX-hash-then-sign schemes. We then show that these limitations can be overcome for the RMX-hash-then-sign schemes if it is easy to find fixed points for the underlying compression functions, such as for the Davies-Meyer construction used in the popular hash functions such as MD5 designed by Rivest and the SHA family of hash functions designed by the National Security Agency (NSA), USA and published by NIST in the Federal Information Processing Standards (FIPS). We show an online birthday forgery attack on this class of signatures by using a variant of Dean’s method of finding fixed point expandable messages for hash functions based on the Davies-Meyer construction. This forgery attack is also applicable to signature schemes based on the variant of RMX standardized by NIST in SP 800-106. We discuss some important applications of our attacks and discuss their applicability on signature schemes based on hash functions with ‘built-in’ randomization. Finally, we compare our attacks on randomize-hash-then-sign schemes with the generic forgery attacks on the standard hash-based message authentication code (HMAC).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Halevi and Krawczyk proposed a message randomization algorithm called RMX as a front-end tool to the hash-then-sign digital signature schemes such as DSS and RSA in order to free their reliance on the collision resistance property of the hash functions. They have shown that to forge a RMX-hash-then-sign signature scheme, one has to solve a cryptanalytical task which is related to finding second preimages for the hash function. In this article, we will show how to use Dean’s method of finding expandable messages for finding a second preimage in the Merkle-Damgård hash function to existentially forge a signature scheme based on a t-bit RMX-hash function which uses the Davies-Meyer compression functions (e.g., MD4, MD5, SHA family) in 2 t/2 chosen messages plus 2 t/2 + 1 off-line operations of the compression function and similar amount of memory. This forgery attack also works on the signature schemes that use Davies-Meyer schemes and a variant of RMX published by NIST in its Draft Special Publication (SP) 800-106. We discuss some important applications of our attack.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This document describes algorithms based on Elliptic Cryptography (ECC) for use within the Secure Shell (SSH) transport protocol. In particular, it specifies Elliptic Curve Diffie-Hellman (ECDH) key agreement, Elliptic Curve Menezes-Qu-Vanstone (ECMQV) key agreement, and Elliptic Curve Digital Signature Algorithm (ECDSA) for use in the SSH Transport Layer protocol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The material presented in this thesis may be viewed as comprising two key parts, the first part concerns batch cryptography specifically, whilst the second deals with how this form of cryptography may be applied to security related applications such as electronic cash for improving efficiency of the protocols. The objective of batch cryptography is to devise more efficient primitive cryptographic protocols. In general, these primitives make use of some property such as homomorphism to perform a computationally expensive operation on a collective input set. The idea is to amortise an expensive operation, such as modular exponentiation, over the input. Most of the research work in this field has concentrated on its employment as a batch verifier of digital signatures. It is shown that several new attacks may be launched against these published schemes as some weaknesses are exposed. Another common use of batch cryptography is the simultaneous generation of digital signatures. There is significantly less previous work on this area, and the present schemes have some limited use in practical applications. Several new batch signatures schemes are introduced that improve upon the existing techniques and some practical uses are illustrated. Electronic cash is a technology that demands complex protocols in order to furnish several security properties. These typically include anonymity, traceability of a double spender, and off-line payment features. Presently, the most efficient schemes make use of coin divisibility to withdraw one large financial amount that may be progressively spent with one or more merchants. Several new cash schemes are introduced here that make use of batch cryptography for improving the withdrawal, payment, and deposit of electronic coins. The devised schemes apply both to the batch signature and verification techniques introduced, demonstrating improved performance over the contemporary divisible based structures. The solutions also provide an alternative paradigm for the construction of electronic cash systems. Whilst electronic cash is used as the vehicle for demonstrating the relevance of batch cryptography to security related applications, the applicability of the techniques introduced extends well beyond this.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gradual authentication is a principle proposed by Meadows as a way to tackle denial-of-service attacks on network protocols by gradually increasing the confidence in clients before the server commits resources. In this paper, we propose an efficient method that allows a defending server to authenticate its clients gradually with the help of some fast-to-verify measures. Our method integrates hash-based client puzzles along with a special class of digital signatures supporting fast verification. Our hash-based client puzzle provides finer granularity of difficulty and is proven secure in the puzzle difficulty model of Chen et al. (2009). We integrate this with the fast-verification digital signature scheme proposed by Bernstein (2000, 2008). These schemes can be up to 20 times faster for client authentication compared to RSA-based schemes. Our experimental results show that, in the Secure Sockets Layer (SSL) protocol, fast verification digital signatures can provide a 7% increase in connections per second compared to RSA signatures, and our integration of client puzzles with client authentication imposes no performance penalty on the server since puzzle verification is a part of signature verification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the last two decades, the internet and e-commerce have reshaped the way we communicate, interact and transact. In the converged environment enabled by high speed broadband, web 2.0, social media, virtual worlds, user-generated content, cloud computing, VoIP, open source software and open content have rapidly become established features of our online experience. Business and government alike are increasingly using the internet as the preferred platform for delivery of their goods and services and for effective engagement with their clients. New ways of doing things online and challenges to existing business, government and social activities have tested current laws and often demand new policies and laws, adapted to the new realities. The focus of this book is the regulation of social, cultural and commercial activity on the World Wide Web. It considers developments in the law that have been, and continue to be, brought about by the emergence of the internet and e-commerce. It analyses how the law is applied to define rights and obligations in relation to online infrastructure, content and practices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Digital signatures are often used by trusted authorities to make unique bindings between a subject and a digital object; for example, certificate authorities certify a public key belongs to a domain name, and time-stamping authorities certify that a certain piece of information existed at a certain time. Traditional digital signature schemes however impose no uniqueness conditions, so a trusted authority could make multiple certifications for the same subject but different objects, be it intentionally, by accident, or following a (legal or illegal) coercion. We propose the notion of a double-authentication-preventing signature, in which a value to be signed is split into two parts: a subject and a message. If a signer ever signs two different messages for the same subject, enough information is revealed to allow anyone to compute valid signatures on behalf of the signer. This double-signature forgeability property discourages signers from misbehaving---a form of self-enforcement---and would give binding authorities like CAs some cryptographic arguments to resist legal coercion. We give a generic construction using a new type of trapdoor functions with extractability properties, which we show can be instantiated using the group of sign-agnostic quadratic residues modulo a Blum integer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we tackle the problem of finding an efficient signature verification scheme when the number of signatures is signi.- cantly large and the verifier is relatively weak. In particular, we tackle the problem of message authentication in many-to-one communication networks known as concast communication. The paper presents three signature screening algorithms for a variant of ElGamal-type digital signatures. The cost for these schemes is n applications of hash functions, 2n modular multiplications, and n modular additions plus the verification of one digital signature, where n is the number of signatures. The paper also presents a solution to the open problem of finding a fast screening signature for non-RSA digital signature schemes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Digital signature is a breakthrough of modern cryptographic systems. A (t, n) threshold digital signature allows every set of cardinality t or more (out-of n) co-signers to authenticate a message. In almost all existing threshold digital signatures the threshold parameter t is fixed. There are applications, however, in which the threshold parameter needs to be changed from time to time. This paper considers such a scenario, in order to discuss relevant problems, and proposes a model that solves the related problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Universal Designated-Verifier Signature (UDVS) schemes are digital signature schemes with additional functionality which allows any holder of a signature to designate the signature to any desired designated-verifier such that the designated-verifier can verify that the message was signed by the signer, but is unable to convince anyone else of this fact. Since UDVS schemes reduce to standard signatures when no verifier designation is performed, it is natural to ask how to extend the classical Schnorr or RSA signature schemes into UDVS schemes, so that the existing key generation and signing implementation infrastructure for these schemes can be used without modification. We show how this can be efficiently achieved, and provide proofs of security for our schemes in the random oracle model.