27 resultados para DETRITAL ZIRCON

em Queensland University of Technology - ePrints Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Secondary ionization mass spectrometry (SIMS) U–Pb dating of zircons from the Åreskutan Nappe in the central part of the Seve Nappe Complex of western central Jämtland provides new constraints on the timing of granulite–amphibolite-facies metamorphism and tectonic stacking of the nappe during the Caledonian orogeny. Peak-temperature metamorphism in garnet migmatites is constrained to c. 442 ± 4 Ma, very similar to the ages of leucogranites at 442 ± 3 and 441 ± 4 Ma. Within a migmatitic amphibolite, felsic segregations crystallized at 436 ± 2 Ma. Pegmatites, cross-cutting the dominant Caledonian foliation in the Nappe, yield 428 ± 4 and 430 ± 3 Ma ages. The detrital zircon cores in the migmatites and leucogranites provide evidence of Late Palaeoproterozoic, Mesoproterozoic to Early Neoproterozoic source terranes for the metasedimentary rocks. The formation of the ductile and hot Seve migmatites, with their inverted metamorphism and thinning towards the hinterland, can be explained by an extrusion model in which the allochthon stayed ductile for a period of at least 10 million years during cooling from peak-temperature metamorphism early in the Silurian. In our model, Baltica–Laurentia collision occurred in the Late Ordovician–earliest Silurian, with emplacement of the nappes far on to the Baltoscandian platform during the Silurian and early Devonian, Scandian Orogeny lasting until c. 390 Ma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thick piles of late-Archean volcaniclastic sedimentary successions that overlie the voluminous greenstone units of the eastern Yilgarn Craton, Western Australia, record the important transition from the cessation in mafic-ultramafic volcanism to cratonisation between about 2690 and 2655 Ma. Unfortunately, an inability to clearly subdivide the superficially similar sedimentary successions and correlate them between the various geological terranes and domains of the eastern Yilgarn Craton has led to uncertainty about the timing and nature of the region's palaeogeographic and palaeotectonic evolution. Here, we present the results of some 2025 U–Pb laser-ablation-ICP-MS analyses and 323 Sensitive High-Resolution Ion Microprobe (SHRIMP) analyses of detrital zircons from 14 late-Archean felsic clastic successions of the eastern Yilgarn Craton, which have enabled correlation of clastic successions. The results of our data, together with those compiled from previous studies, show that the post-greenstone sedimentary successions include two major cycles that both commenced with voluminous pyroclastic volcanism and ended with widespread exhumation and erosion associated with granite emplacement. Cycle One commences with an influx of rapidly reworked feldspar-rich pyroclastic debris. These units, here-named the Early Black Flag Group, are dominated by a single population of detrital zircons with an average age of 2690–2680 Ma. Thick (up to 2 km) dolerite bodies, such as the Golden Mile Dolerite, intrude the upper parts of the Early Black Flag Group at about 2680 Ma. Incipient development of large granite domes during Cycle One created extensional basins predominantly near their southeastern and northwestern margins (e.g., St Ives, Wallaby, Kanowna Belle and Agnew), into which the Early Black Flag Group and overlying coarse mafic conglomerate facies of the Late Black Flag Group were deposited. The clast compositions and detrital-zircon ages of the late Black Flag Group detritus match closely the nearby and/or stratigraphically underlying successions, thus suggesting relatively local provenance. Cycle Two involved a similar progression to that observed in Cycle One, but the age and composition of the detritus were notably different. Deposition of rapidly reworked quartz-rich pyroclastic deposits dominated by a single detrital-zircon age population of 2670–2660 Ma heralded the beginning of Cycle Two. These coarse-grained quartz-rich units, are name here the Early Merougil Group. The mean ages of the detrital zircons from the Early Merougil Group match closely the age of the peak in high-Ca (quartz-rich) granite magmatism in the Yilgarn Craton and thus probably represent the surface expression of the same event. Successions of the Late Merougil Group are dominated by coarse felsic conglomerate with abundant volcanic quartz. Although the detrital zircons in these successions have a broad spread of age, the principal sub-populations have ages of about 2665 Ma and thus match closely those of the Early Merougil Group. These successions occur most commonly at the northwestern and southeastern margins of the granite batholiths and thus are interpreted to represent resedimented units dominted by the stratigraphically underlying packages of the Early Merougil Group. The Kurrawang Group is the youngest sedimentary units identified in this study and is dominated by polymictic conglomerate with clasts of banded iron formation (BIF), granite and quartzite near the base and quartz-rich sandstone units containing detrital zircons aged up to 3500 Ma near the top. These units record provenance from deeper and/or more-distal sources. We suggest here that the principal driver for the major episodes of volcanism, sedimentation and deformation associated with basin development was the progressive emplacement of large granite batholiths. This interpretation has important implication for palaeogeographic and palaeotectonic evolution of all late-Archean terranes around the world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The timing of widespread continental emergence is generally considered to have had a dramatic effect on the hydrological cycle, atmospheric conditions, and climate. New secondary ion mass spectrometry (SIMS) oxygen and laser-ablation–multicollector–inductively coupled plasma–mass spectrometry (LA-MC-ICP-MS) Lu-Hf isotopic results from dated zircon grains in the granitic Neoarchean Rum Jungle Complex provide a minimum time constraint on the emergence of continental crust above sea level for the North Australian craton. A 2535 ± 7 Ma monzogranite is characterized by magmatic zircon with slightly elevated δ18O (6.0‰–7.5‰ relative to Vienna standard mean ocean water [VSMOW]), consistent with some contribution to the magma from reworked supracrustal material. A supracrustal contribution to magma genesis is supported by the presence of metasedimentary rock enclaves, a large population of inherited zircon grains, and subchondritic zircon Hf (εHf = −6.6 to −4.1). A separate, distinct crustal source to the same magma is indicated by inherited zircon grains that are dominated by low δ18O values (2.5‰–4.8‰, n = 9 of 15) across a range of ages (3536–2598 Ma; εHf = −18.2 to +0.4). The low δ18O grains may be the product of one of two processes: (1) grain-scale diffusion of oxygen in zircon by exchange with a low δ18O magma or (2) several episodes of magmatic reworking of a Mesoarchean or older low δ18O source. Both scenarios require shallow crustal magmatism in emergent crust, to allow interaction with rocks altered by hydrothermal meteoric water in order to generate the low δ18O zircon. In the first scenario, assimilation of these altered rocks during Neoarchean magmatism generated low δ18O magma with which residual detrital zircons were able to exchange oxygen, while preserving their U-Pb systematics. In the second scenario, wholesale melting of the altered rocks occurred in several distinct events through the Mesoarchean, generating low δ18O magma from which zircon crystallized. Ultimately, in either scenario, the low δ18O zircons were entrained as inherited grains in a Neoarchean granite. The data suggest operation of a modern hydrological cycle by the Neoarchean and add to evidence for the increased emergence of continents by this time

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High heat-producing granites (HHPGs) are reservoir rocks for enhanced geothermal systems (EGS), yet the origins of their anomalous chemistry remain poorly understood. To gain a better understanding of the characteristic distribution of elemental depletions and enrichments (focussing on U, Th & K) within granite suites of different heritage and tectonic setting, and the processes that lead to these enrichments, we are undertaking a systematic accessory-mineral chronochemical study of two suites of S- and I-type granites in northern Queensland, as well as two archetypal HHPGs in Cornwall, England (S-type) and Soultz-sous- Forêts, France (I-type). Novel zircon LA-ICP-MS chronochemical methods will later be underpinned by a systematic petrographic, scanning electron microscope (SEM), and electron microprobe (EPMA) study of all the REE-Y-Th-U-rich accessory minerals to fully characterise how the composition, textural distributions and associations change with rock chemistry between and among the suites. Preliminary results indicate that zircons with inherited ages do not have anomalously high U (>1000 ppm) & Th (>400 ppm) values (Ahrens, 1965). Instead, enrichment in these HPE is seen in zircons dated to around the time of magmatic emplacement. These results indicate that enrichment arose primarily through fractional crystallisation of the granitic magmas. Our results support the suggestion that a source pre-enriched in the HPEs does not appear to be fundamental for the formation of all HHPGs. Instead fractional crystallisation processes, and the accessory minerals formed in magmas of differing initial compositions, are the key controls on the levels of enrichment observed (e.g. Champion & Chappell, 1992; Chappell & Hine, 2006). One implication is that the most fractionated granites may not be the most enriched in the HPEs and therefore prospective to future EGS development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Black et al. (2004) identified a systematic difference between LA–ICP–MS and TIMS measurements of 206Pb/238U in zircons, which they correlated with the incompatible trace element content of the zircon. We show that the offset between the LA–ICP–MS and TIMS measured 206Pb/238U correlates more strongly with the total radiogenic Pb than with any incompatible trace element. This suggests that the cause of the 206Pb/238U offset is related to differences in the radiation damage (alpha dose) between the reference and unknowns. We test this hypothesis in two ways. First, we show that there is a strong correlation between the difference in the LA–ICP–MS and TIMS measured 206Pb/238U and the difference in the alpha dose received by unknown and reference zircons. The LA–ICP–MS ages for the zircons we have dated can be as much as 5.1% younger than their TIMS age to 2.1% older, depending on whether the unknown or reference received the higher alpha dose. Second, we show that by annealing both reference and unknown zircons at 850 °C for 48 h in air we can eliminate the alpha-dose-induced differences in measured 206Pb/238U. This was achieved by analyzing six reference zircons a minimum of 16 times in two round robin experiments: the first consisting of unannealed zircons and the second of annealed grains. The maximum offset between the LA–ICP–MS and TIMS measured 206Pb/238U for the unannealed zircons was 2.3%, which reduced to 0.5% for the annealed grains, as predicted by within-session precision based on counting statistics. Annealing unknown zircons and references to the same state prior to analysis holds the promise of reducing the 3% external error for the measurement of 206Pb/238U of zircon by LA–ICP–MS, indicated by Klötzli et al. (2009), to better than 1%, but more analyses of annealed zircons by other laboratories are required to evaluate the true potential of the annealing method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Texas Orocline is a prominent orogenic curvature that developed during the early Permian in the southern New England Orogen. Outliers preserving lower Permian sedimentary successions (Bondonga, Silver Spur, Pikedale, Terrica, Alum Rock and Ashford beds) approximately outline the oroclinal structure, but the tectonic processes responsible for the development of these basinal successions, and their relationships to the Texas Orocline, are unclear. Here we address this shortcoming by providing new U–Pb detrital and primary zircon ages from these successions, as well as detailed stratigraphic and structural data from the largest exposed succession (Bondonga beds). Field observations and U–Pb geochronological data suggest that the lower Permian successions in the Texas Orocline are remnants of a single, formerly larger basin that was deposited after ca 302 Ma. Time constraints for formation of this basin are correlative with constraints from the lower Permian Nambucca Block, which was likely deposited in response to regional back-arc extension during and/or after the development of the Texas Orocline. The conclusion that the lower Permian sedimentary basins in the Texas Orocline belong to this back-arc extensional system supports the suggestion that oroclinal bending in the New England Orogen was primarily controlled by trench retreat and associated overriding-plate extension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several specimens of Libyan Desert Glass (LDG), an enigmatic natural glass from Egypt, were subjected to investigation by micro-Raman spectroscopy. The spectra of inclusions inside the LDG samples were successfully measured through the layers of glass and the mineral species were identified on this basis. The presence of cristobalite as typical for high-temperature melt products was confirmed, together with co-existing quartz. TiO2 was determined in two polymorphic species, rutile and anatase. Micro-Raman spectroscopy proved also the presence of minerals unusual for high-temperature glasses such as anhydrite and aragonite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous research suggests that soil organic C pools may be a feature of semiarid regions that are particularly sensitive to climatic changes. We instituted an 18-mo experiment along an elevation gradient in northern Arizona to evaluate the influence of temperature, moisture, and soil C pool size on soil respiration. Soils, from underneath different free canopy types and interspaces of three semiarid ecosystems, were moved upslope and/or downslope to modify soil climate. Soils moved downslope experienced increased temperature and decreased precipitation, resulting in decreased soil moisture and soil respiration las much as 23 acid 20%, respectively). Soils moved upslope to more mesic, cooler sites had greater soil water content and increased rates of soil respiration las much as 40%), despite decreased temperature. Soil respiration rates normalized for total C were not significantly different within any of the three incubation sites, indicating that under identical climatic conditions, soil respiration is directly related to soil C pool size for the incubated soils. Normalized soil respiration rates between sites differed significantly for all soil types and were always greater for soils incubated under more mesic, but cooler, conditions. Total soil C did not change significantly during the experiment, but estimates suggest that significant portions of the rapidly cycling C pool were lost. While long-term decreases in aboveground and belowground detrital inputs may ultimately be greater than decreased soil respiration, the initial response to increased temperature and decreased precipitation in these systems is a decrease in annual soil C efflux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voluminous (≥3·9 × 105 km3), prolonged (∼18 Myr) explosive silicic volcanism makes the mid-Tertiary Sierra Madre Occidental province of Mexico one of the largest intact silicic volcanic provinces known. Previous models have proposed an assimilation–fractional crystallization origin for the rhyolites involving closed-system fractional crystallization from crustally contaminated andesitic parental magmas, with <20% crustal contributions. The lack of isotopic variation among the lower crustal xenoliths inferred to represent the crustal contaminants and coeval Sierra Madre Occidental rhyolite and basaltic andesite to andesite volcanic rocks has constrained interpretations for larger crustal contributions. Here, we use zircon age populations as probes to assess crustal involvement in Sierra Madre Occidental silicic magmatism. Laser ablation-inductively coupled plasma-mass spectrometry analyses of zircons from rhyolitic ignimbrites from the northeastern and southwestern sectors of the province yield U–Pb ages that show significant age discrepancies of 1–4 Myr compared with previously determined K/Ar and 40Ar/39Ar ages from the same ignimbrites; the age differences are greater than the errors attributable to analytical uncertainty. Zircon xenocrysts with new overgrowths in the Late Eocene to earliest Oligocene rhyolite ignimbrites from the northeastern sector provide direct evidence for some involvement of Proterozoic crustal materials, and, potentially more importantly, the derivation of zircon from Mesozoic and Eocene age, isotopically primitive, subduction-related igneous basement. The youngest rhyolitic ignimbrites from the southwestern sector show even stronger evidence for inheritance in the age spectra, but lack old inherited zircon (i.e. Eocene or older). Instead, these Early Miocene ignimbrites are dominated by antecrystic zircons, representing >33 to ∼100% of the dated population; most antecrysts range in age between ∼20 and 32 Ma. A sub-population of the antecrystic zircons is chemically distinct in terms of their high U (>1000 ppm to 1·3 wt %) and heavy REE contents; these are not present in the Oligocene ignimbrites in the northeastern sector of the Sierra Madre Occidental. The combination of antecryst zircon U–Pb ages and chemistry suggests that much of the zircon in the youngest rhyolites was derived by remelting of partially molten to solidified igneous rocks formed during preceding phases of Sierra Madre Occidental volcanism. Strong Zr undersaturation, and estimations for very rapid dissolution rates of entrained zircons, preclude coeval mafic magmas being parental to the rhyolite magmas by a process of lower crustal assimilation followed by closed-system crystal fractionation as interpreted in previous studies of the Sierra Madre Occidental rhyolites. Mafic magmas were more probably important in providing a long-lived heat and material flux into the crust, resulting in the remelting and recycling of older crust and newly formed igneous materials related to Sierra Madre Occidental magmatism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stromatolites consist primarily of trapped and bound ambient sediment and/or authigenic mineral precipitates, but discrimination of the two constituents is difficult where stromatolites have a fine texture. We used laser ablation-inductively coupled plasma-mass spectrometry to measure trace element (rare earth element – REE, Y and Th) concentrations in both stromatolites (domical and branched) and closely associated particulate carbonate sediment in interspaces (spaces between columns or branches) from bioherms within the Neoproterozoic Bitter Springs Formation, central Australia. Our high resolution sampling allows discrimination of shale-normalised REE patterns between carbonate in stromatolites and immediately adjacent, fine-grained ambient particulate carbonate sediment from interspaces. Whereas all samples show similar negative La and Ce anomalies, positive Gd anomalies and chondritic Y/Ho ratios, the stromatolites and non-stromatolite sediment are distinguishable on the basis of consistently elevated light REEs (LREEs) in the stromatolitic laminae and relatively depleted LREEs in the particulate sediment samples. Additionally, concentrations of the lithophile element Th are higher in ambient sediment samples than in stromatolites, consistent with accumulation of some fine siliciclastic detrital material in the ambient sediment but a near absence in the stromatolites. These findings are consistent with the stromatolites consisting dominantly of in situ carbonate precipitates rather than trapped and bound ambient sediment. Hence, high resolution trace element (REE + Y, Th) geochemistry can discriminate fine-grained carbonates in these stromatolites from coeval non-stromatolitic carbonate sediment and demonstrates that the sampled stromatolites formed primarily from in situ precipitation, presumably within microbial mats/biofilms, rather than by trapping and binding of ambient sediment. Identification of the source of fine carbonate in stromatolites is significant, because if it is not too heavily contaminated by trapped ambient sediment, it may contain geochemical biosignatures and/or direct evidence of the local water chemistry in which the precipitates formed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this research, we have used vibrational spectroscopy to study the phosphate mineral kosnarite KZr2(PO4)3. Interest in this mineral rests with the ability of zirconium phosphates (ZP) to lock in radioactive elements. ZP have the capacity to concentrate and immobilize the actinide fraction of radioactive phases in homogeneous zirconium phosphate phases. The Raman spectrum of kosnarite is characterized by a very intense band at 1,026 cm−1 assigned to the symmetric stretching vibration of the PO4 3− ν1 symmetric stretching vibration. The series of bands at 561, 595 and 638 cm−1 are assigned to the ν4 out-of-plane bending modes of the PO4 3− units. The intense band at 437 cm−1 with other bands of lower wavenumber at 387, 405 and 421 cm−1 is assigned to the ν2 in-plane bending modes of the PO4 3− units. The number of bands in the antisymmetric stretching region supports the concept that the symmetry of the phosphate anion in the kosnarite structure is preserved. The width of the infrared spectral profile and its complexity in contrast to the well-resolved Raman spectrum show that the pegmatitic phosphates are better studied with Raman spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed mineralogical studies of the matrix and fracture-fill materials of a large number of samples from the Rustler Formation have been carried out using x-ray diffraction, high-resolution transmission electron microscopy, electron microprobe analysis, x-ray fluorescence, and atomic absorption spectrophotometry. These analyses indicate the presence of four clay minerals: interstratified chlorite/saponite, illite, chlorite, and serpentine. Corrensite (regularly stratified chlorite/saponite) is the dominant clay mineral in samples from the Culebra dolomite and two shale layers of the lower unnamed member of the Rustler Formation. Within other layers of the Rustler Formation, disordered mixed chlorite/saponite is usually the most abundant clay mineral. Studies of the morphology and composition of clay crystallites suggest that the corrensite was formed by the alteration of detrital dioctahedral smectite in magnesium-rich pore fluids during early diagenesis of the Rustler Formation. This study provides initial estimates of the abundance and nature of the clay minerals in the Culebra dolomite in the vicinity of the Waste Isolation Pilot Plant.