2 resultados para DESMODUS
em Queensland University of Technology - ePrints Archive
Resumo:
Bats (Chiroptera) are generally awkward crawlers, but the common vampire bat (Desmodus rotundus) and the New Zealand short-tailed bat (Mystacina tuberculata) have independently evolved the ability to manoeuvre well on the ground. In this study we describe the kinematics of locomotion in both species, and the kinetics of locomotion in M. tuberculata. We sought to determine whether these bats move terrestrially the way other quadrupeds do, or whether they possess altogether different patterns of movement on the ground than are observed in quadrupeds that do not fly. Using high-speed video analyses of bats moving on a treadmill, we observed that both species possess symmetrical lateral-sequence gaits similar to the kinematically defined walks of a broad range of tetrapods. At high speeds, D. rotundus use an asymmetrical bounding gait that appears to converge on the bounding gaits of small terrestrial mammals, but with the roles of the forelimbs and hindlimbs reversed. This gait was not performed by M. tuberculata. Many animals that possess a single kinematic gait shift with increasing speed from a kinetic walk (where kinetic and potential energy of the centre of mass oscillate out of phase from each other) to a kinetic run (where they oscillate in phase). To determine whether the single kinematic gait of M. tuberculata meets the kinetic definition of a walk, a run, or a gait that functions as a walk at low speed and a run at high speed, we used force plates and high-speed video recordings to characterize the energetics of the centre of mass in that species. Although oscillations in kinetic and potential energy were of similar magnitudes, M. tuberculata did not use pendulum-like exchanges of energy between them to the extent that many other quadrupedal animals do, and did not transition from a kinetic walk to kinetic run with increasing speed. The gait of M. tuberculata is kinematically a walk, but kinetically run-like at all speeds.
Resumo:
Vampire bats, Desmodus rotundus, must maximize their feeding cycle of one blood meal per day by being efficient in the stalking and acquisition of their food. Riskin and Hermanson documented the running gait of the common vampire bat and observed they were efficient at running speeds, using longer stride lengths and thus decreased stride frequency. We obtained preliminary data on gait maintained for up to 10 minutes on a moving treadmill belt at speeds ranging from 0.23 to 0.74 m/s, which spanned a range from walking to running gaits. Bats tended to transition between gaits at about 0.40 m/s. Fourteen bats were studied and included four that were able to walk or run for 10 minutes. There was no significant change in either stride duration or frequency associated with an increase in speed. We estimated O2 consumption and CO2 production both before and 5 minutes after exercise, and found that O2 consumption increased 1 minute and 5 minutes after exercise. CO2 levels increased significantly 1 minute after exercise, but tended back towards pre-exercise level 5 minutes after exercise. Two bats were tested for blood O2, CO2 and pH levels. Interestingly, pH levels fell from 7.3 to about 7.0, indicating lactate accumulation.