422 resultados para DEPENDENT QUANTUM PROBLEMS

em Queensland University of Technology - ePrints Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasma Nanoscience is a multidisciplinary research field which aims to elucidate the specific roles, purposes, and benefits of the ionized gas environment in assembling and processing nanoscale objects in natural, laboratory and technological situations. Compared to neutral gas-based routes, in low-temperature weakly-ionized plasmas there is another level of complexity related to the necessity of creating and sustaining a suitable degree of ionization and a much larger number of species generated in the gas phase. The thinner the nanotubes, the stronger is the quantum confinement of electrons and more unique size-dependent quantum effects can emerge. Furthermore, due to a very high mobility of electrons, the surfaces are at a negative potential compared to the plasma bulk. Therefore, there are non-uniform electric fields within the plasma sheath. The electric field lines start in the plasma bulk and converge to the sharp tips of the developing one-dimensional nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum psychopathology holds the so called “quantum mind” hypothesis, which is controversial. In addition, this hypothesis focuses attention onto quantum processes in the brain, and how this may relate to psychopathological issues. This is very “low level”. As a consequence, it is challenging to form bridges to “higher level” problems related to psychopathology. By adopting the stance used in the quantum interaction community or researchers, this reply puts forward the idea that an idealistic approach may circumvent the controversy and opens the way for addressing challenges at higher levels of psychopathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alexithymia is characterised by deficits in emotional insight and self reflection, that impact on the efficacy of psychological treatments. Given the high prevalence of alexithymia in Alcohol Use Disorders, valid assessment tools are critical. The majority of research on the relationship between alexithymia and alcohol-dependence has employed the self-administered Toronto Alexithymia Scale (TAS-20). The Observer Alexithymia Scale (OAS) has also been recommended. The aim of the present study was to assess the validity and reliability of the OAS and the TAS-20 in an alcohol-dependent sample. Two hundred and ten alcohol-dependent participants in an outpatient Cognitive Behavioral Treatment program were administered the TAS-20 at assessment and upon treatment completion at 12 weeks. Clinical psychologists provided observer assessment data for a subsample of 159 patients. The findings confirmed acceptable internal consistency, test-retest reliability and scale homogeneity for both the OAS and TAS-20, except for the low internal consistency of the TAS-20 EOT scale. The TAS-20 was more strongly associated with alcohol problems than the OAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relatively little information has been reported about foot and ankle problems experienced by nurses, despite anecdotal evidence which suggests they are common ailments. The purpose of this study was to improve knowledge about the prevalence of foot and ankle musculoskeletal disorders (MSDs) and to explore relationships between these MSDs and proposed risk factors. A review of the literature relating to work-related MSDs, MSDs in nursing, foot and lower-limb MSDs, screening for work-related MSDs, foot discomfort, footwear and the prevalence of foot problems in the community was undertaken. Based on the review, theoretical risk factors were proposed that pertained to the individual characteristics of the nurses, their work activity or their work environment. Three studies were then undertaken. A cross-sectional survey of 304 nurses, working in a large tertiary paediatric hospital, established the prevalence of foot and ankle MSDs. The survey collected information about self-reported risk factors of interest. The second study involved the clinical examination of a subgroup of 40 nurses, to examine changes in body discomfort, foot discomfort and postural sway over the course of a single work shift. Objective measurements of additional risk factors, such as individual foot posture (arch index) and the hardness of shoe midsoles, were performed. A final study was used to confirm the test-retest reliability of important aspects of the survey and key clinical measurements. Foot and ankle problems were the most common MSDs experienced by nurses in the preceding seven days (42.7% of nurses). They were the second most common MSDs to cause disability in the last 12 months (17.4% of nurses), and the third most common MSDs experienced by nurses in the last 12 months (54% of nurses). Substantial foot discomfort (Visual Analogue Scale (VAS) score of 50mm or more) was experienced by 48.5% of nurses at sometime in the last 12 months. Individual risk factors, such as obesity and the number of self-reported foot conditions (e.g., callouses, curled toes, flat feet) were strongly associated with the likelihood of experiencing foot problems in the last seven days or during the last 12 months. These risk factors showed consistent associations with disabling foot conditions and substantial foot discomfort. Some of these associations were dependent upon work-related risk factors, such as the location within the hospital and the average hours worked per week. Working in the intensive care unit was associated with higher odds of experiencing foot problems within the last seven days, foot problems in the last 12 months and foot problems that impaired activity in the last 12 months. Changes in foot discomfort experienced within a day, showed large individual variability. Fifteen of the forty nurses experienced moderate/substantial foot discomfort at the end of their shift (VAS 25+mm). Analysis of the association between risk factors and moderate/substantial foot discomfort revealed that foot discomfort was less likely for nurses who were older, had greater BMI or had lower foot arches, as indicated by higher arch index scores. The nurses’ postural sway decreased over the course of the work shift, suggesting improved body balance by the end of the day. These findings were unexpected. Further clinical studies examining individual nurses on several work shifts are needed to confirm these results, particularly due to the small sample size and the single measurement occasion. There are more than 280,000 nurses registered to practice in Australia. The nursing workforce is ageing and the prevalence of foot problems will increase. If the prevalence estimates from this study are extrapolated to the profession generally, more than 70,000 hospital nurses have experienced substantial foot discomfort and 25-30,000 hospital nurses have been limited in their activity due to foot problems during the last 12 months. Nurses with underlying foot conditions were more likely to report having foot problems at work. Strategies to prevent or manage foot conditions exist and they should be disseminated to nurses. Obesity is a significant risk factor for foot and ankle MSDs and these nurses may need particular assistance to manage foot problems. The risk of foot problems for particular groups of nurses, e.g. obese nurses, may vary depending upon the location within the hospital. Further research is needed to confirm the findings of this study. Similar studies should be conducted in other occupational groups that require workers to stand for prolonged periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with some plane strain and axially symmetric free surface problems which arise in the study of static granular solids that satisfy the Coulomb-Mohr yield condition. Such problems are inherently nonlinear, and hence difficult to attack analytically. Given a Coulomb friction condition holds on a solid boundary, it is shown that the angle a free surface is allowed to attach to the boundary is dependent only on the angle of wall friction, assuming the stresses are all continuous at the attachment point, and assuming also that the coefficient of cohesion is nonzero. As a model problem, the formation of stable cohesive arches in hoppers is considered. This undesirable phenomena is an obstacle to flow, and occurs when the hopper outlet is too small. Typically, engineers are concerned with predicting the critical outlet size for a given hopper and granular solid, so that for hoppers with outlets larger than this critical value, arching cannot occur. This is a topic of considerable practical interest, with most accepted engineering methods being conservative in nature. Here, the governing equations in two limiting cases (small cohesion and high angle of internal friction) are considered directly. No information on the critical outlet size is found; however solutions for the shape of the free boundary (the arch) are presented, for both plane and axially symmetric geometries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the exclusion-process literature, mean-field models are often derived by assuming that the occupancy status of lattice sites is independent. Although this assumption is questionable, it is the foundation of many mean-field models. In this work we develop methods to relax the independence assumption for a range of discrete exclusion process-based mechanisms motivated by applications from cell biology. Previous investigations that focussed on relaxing the independence assumption have been limited to studying initially-uniform populations and ignored any spatial variations. By ignoring spatial variations these previous studies were greatly simplified due to translational invariance of the lattice. These previous corrected mean-field models could not be applied to many important problems in cell biology such as invasion waves of cells that are characterised by moving fronts. Here we propose generalised methods that relax the independence assumption for spatially inhomogeneous problems, leading to corrected mean-field descriptions of a range of exclusion process-based models that incorporate (i) unbiased motility, (ii) biased motility, and (iii) unbiased motility with agent birth and death processes. The corrected mean-field models derived here are applicable to spatially variable processes including invasion wave type problems. We show that there can be large deviations between simulation data and traditional mean-field models based on invoking the independence assumption. Furthermore, we show that the corrected mean-field models give an improved match to the simulation data in all cases considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As computers approach the physical limits of information storable in memory, new methods will be needed to further improve information storage and retrieval. We propose a quantum inspired vector based approach, which offers a contextually dependent mapping from the subsymbolic to the symbolic representations of information. If implemented computationally, this approach would provide exceptionally high density of information storage, without the traditionally required physical increase in storage capacity. The approach is inspired by the structure of human memory and incorporates elements of Gardenfors’ Conceptual Space approach and Humphreys et al.’s matrix model of memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present experimental and theoretical results of the intensity dependence of residual amplitude modulation (RAM) production in electro-optic phase modulators. By utilizing the anisotropy of the medium, we show that RAM has a photorefractive origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A known limitation of the Probability Ranking Principle (PRP) is that it does not cater for dependence between documents. Recently, the Quantum Probability Ranking Principle (QPRP) has been proposed, which implicitly captures dependencies between documents through “quantum interference”. This paper explores whether this new ranking principle leads to improved performance for subtopic retrieval, where novelty and diversity is required. In a thorough empirical investigation, models based on the PRP, as well as other recently proposed ranking strategies for subtopic retrieval (i.e. Maximal Marginal Relevance (MMR) and Portfolio Theory(PT)), are compared against the QPRP. On the given task, it is shown that the QPRP outperforms these other ranking strategies. And unlike MMR and PT, one of the main advantages of the QPRP is that no parameter estimation/tuning is required; making the QPRP both simple and effective. This research demonstrates that the application of quantum theory to problems within information retrieval can lead to significant improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we summarise the development of a ranking principle based on quantum probability theory, called the Quantum Probability Ranking Principle (QPRP), and we also provide an overview of the initial experiments performed employing the QPRP. The main difference between the QPRP and the classic Probability Ranking Principle, is that the QPRP implicitly captures the dependencies between documents by means of quantum interference". Subsequently, the optimal ranking of documents is not based solely on documents' probability of relevance but also on the interference with the previously ranked documents. Our research shows that the application of quantum theory to problems within information retrieval can lead to consistently better retrieval effectiveness, while still being simple, elegant and tractable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we investigate the use of quantum probability theory for ranking documents. Quantum probability theory is used to estimate the probability of relevance of a document given a user's query. We posit that quantum probability theory can lead to a better estimation of the probability of a document being relevant to a user's query than the common approach, i. e. the Probability Ranking Principle (PRP), which is based upon Kolmogorovian probability theory. Following our hypothesis, we formulate an analogy between the document retrieval scenario and a physical scenario, that of the double slit experiment. Through the analogy, we propose a novel ranking approach, the quantum probability ranking principle (qPRP). Key to our proposal is the presence of quantum interference. Mathematically, this is the statistical deviation between empirical observations and expected values predicted by the Kolmogorovian rule of additivity of probabilities of disjoint events in configurations such that of the double slit experiment. We propose an interpretation of quantum interference in the document ranking scenario, and examine how quantum interference can be effectively estimated for document retrieval. To validate our proposal and to gain more insights about approaches for document ranking, we (1) analyse PRP, qPRP and other ranking approaches, exposing the assumptions underlying their ranking criteria and formulating the conditions for the optimality of the two ranking principles, (2) empirically compare three ranking principles (i. e. PRP, interactive PRP, and qPRP) and two state-of-the-art ranking strategies in two retrieval scenarios, those of ad-hoc retrieval and diversity retrieval, (3) analytically contrast the ranking criteria of the examined approaches, exposing similarities and differences, (4) study the ranking behaviours of approaches alternative to PRP in terms of the kinematics they impose on relevant documents, i. e. by considering the extent and direction of the movements of relevant documents across the ranking recorded when comparing PRP against its alternatives. Our findings show that the effectiveness of the examined ranking approaches strongly depends upon the evaluation context. In the traditional evaluation context of ad-hoc retrieval, PRP is empirically shown to be better or comparable to alternative ranking approaches. However, when we turn to examine evaluation contexts that account for interdependent document relevance (i. e. when the relevance of a document is assessed also with respect to other retrieved documents, as it is the case in the diversity retrieval scenario) then the use of quantum probability theory and thus of qPRP is shown to improve retrieval and ranking effectiveness over the traditional PRP and alternative ranking strategies, such as Maximal Marginal Relevance, Portfolio theory, and Interactive PRP. This work represents a significant step forward regarding the use of quantum theory in information retrieval. It demonstrates in fact that the application of quantum theory to problems within information retrieval can lead to improvements both in modelling power and retrieval effectiveness, allowing the constructions of models that capture the complexity of information retrieval situations. Furthermore, the thesis opens up a number of lines for future research. These include: (1) investigating estimations and approximations of quantum interference in qPRP; (2) exploiting complex numbers for the representation of documents and queries, and; (3) applying the concepts underlying qPRP to tasks other than document ranking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multimodal trip planner that produces optimal journeys involving both public transport and private vehicle legs has to solve a number of shortest path problems, both on the road network and the public transport network. The algorithms that are used to solve these shortest path problems have been researched since the late 1950s. However, in order to provide accurate journey plans that can be trusted by the user, the variability of travel times caused by traffic congestion must be taken into consideration. This requires the use of more sophisticated time-dependent shortest path algorithms, which have only been researched in depth over the last two decades, from the mid-1990s. This paper will review and compare nine algorithms that have been proposed in the literature, discussing the advantages and disadvantages of each algorithm on the basis of five important criteria that must be considered when choosing one or more of them to implement in a multimodal trip planner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers two problems that frequently arise in dynamic discrete choice problems but have not received much attention with regard to simulation methods. The first problem is how to simulate unbiased simulators of probabilities conditional on past history. The second is simulating a discrete transition probability model when the underlying dependent variable is really continuous. Both methods work well relative to reasonable alternatives in the application discussed. However, in both cases, for this application, simpler methods also provide reasonably good results.